Jiangbing Shuai , Shiqi Song , Zhongcai Wang , Ruoxue Zeng , Xiao Han , Xiaofeng Zhang
{"title":"同时检测十四种猪病毒的 MALDI-TOF 核酸质谱法及其应用","authors":"Jiangbing Shuai , Shiqi Song , Zhongcai Wang , Ruoxue Zeng , Xiao Han , Xiaofeng Zhang","doi":"10.1016/j.jviromet.2024.114990","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Mixed infections of multiple viruses significantly contribute to the prevalence of swine diseases, adversely affecting global livestock production and the economy. However, effectively monitoring multiple viruses and detecting mixed infection samples remains challenging. This study describes a method that combines single-base extension PCR with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to detect important porcine viruses.</p></div><div><h3>Results</h3><p>Our approach accurately and simultaneously identified 14 porcine viruses, including porcine circovirus types 1–3, porcine bocaviruses groups 1–3, African swine fever virus, pseudorabies virus, porcine parvovirus, torque teno sus virus, swine influenza virus, porcine reproductive and respiratory syndrome virus, classical swine fever virus, and foot-and-mouth disease virus. The low limit of detection for multiplex identification ranges from 13.54 to 1.59 copies/μL. Inter- and intra-assay stability was found to be ≥98.3 %. In a comprehensive analysis of 114 samples, the assay exhibited overall agreement with qPCR results of 97.9 %.</p></div><div><h3>Conclusions</h3><p>The developed MALDI-TOF NAMS assay exhibits high sensitivity, specificity, and reliability in detecting and distinguishing a wide spectrum of porcine viruses in complex matrix samples. This underscores its potential as an efficient diagnostic tool for porcine-derived virus surveillance and swine disease control.</p></div>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":"329 ","pages":"Article 114990"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MALDI-TOF nucleic acid mass spectrometry for simultaneously detection of fourteen porcine viruses and its application\",\"authors\":\"Jiangbing Shuai , Shiqi Song , Zhongcai Wang , Ruoxue Zeng , Xiao Han , Xiaofeng Zhang\",\"doi\":\"10.1016/j.jviromet.2024.114990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Mixed infections of multiple viruses significantly contribute to the prevalence of swine diseases, adversely affecting global livestock production and the economy. However, effectively monitoring multiple viruses and detecting mixed infection samples remains challenging. This study describes a method that combines single-base extension PCR with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to detect important porcine viruses.</p></div><div><h3>Results</h3><p>Our approach accurately and simultaneously identified 14 porcine viruses, including porcine circovirus types 1–3, porcine bocaviruses groups 1–3, African swine fever virus, pseudorabies virus, porcine parvovirus, torque teno sus virus, swine influenza virus, porcine reproductive and respiratory syndrome virus, classical swine fever virus, and foot-and-mouth disease virus. The low limit of detection for multiplex identification ranges from 13.54 to 1.59 copies/μL. Inter- and intra-assay stability was found to be ≥98.3 %. In a comprehensive analysis of 114 samples, the assay exhibited overall agreement with qPCR results of 97.9 %.</p></div><div><h3>Conclusions</h3><p>The developed MALDI-TOF NAMS assay exhibits high sensitivity, specificity, and reliability in detecting and distinguishing a wide spectrum of porcine viruses in complex matrix samples. This underscores its potential as an efficient diagnostic tool for porcine-derived virus surveillance and swine disease control.</p></div>\",\"PeriodicalId\":17663,\"journal\":{\"name\":\"Journal of virological methods\",\"volume\":\"329 \",\"pages\":\"Article 114990\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of virological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166093424001149\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166093424001149","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
MALDI-TOF nucleic acid mass spectrometry for simultaneously detection of fourteen porcine viruses and its application
Background
Mixed infections of multiple viruses significantly contribute to the prevalence of swine diseases, adversely affecting global livestock production and the economy. However, effectively monitoring multiple viruses and detecting mixed infection samples remains challenging. This study describes a method that combines single-base extension PCR with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to detect important porcine viruses.
Results
Our approach accurately and simultaneously identified 14 porcine viruses, including porcine circovirus types 1–3, porcine bocaviruses groups 1–3, African swine fever virus, pseudorabies virus, porcine parvovirus, torque teno sus virus, swine influenza virus, porcine reproductive and respiratory syndrome virus, classical swine fever virus, and foot-and-mouth disease virus. The low limit of detection for multiplex identification ranges from 13.54 to 1.59 copies/μL. Inter- and intra-assay stability was found to be ≥98.3 %. In a comprehensive analysis of 114 samples, the assay exhibited overall agreement with qPCR results of 97.9 %.
Conclusions
The developed MALDI-TOF NAMS assay exhibits high sensitivity, specificity, and reliability in detecting and distinguishing a wide spectrum of porcine viruses in complex matrix samples. This underscores its potential as an efficient diagnostic tool for porcine-derived virus surveillance and swine disease control.
期刊介绍:
The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery.
The methods may include, but not limited to, the study of:
Viral components and morphology-
Virus isolation, propagation and development of viral vectors-
Viral pathogenesis, oncogenesis, vaccines and antivirals-
Virus replication, host-pathogen interactions and responses-
Virus transmission, prevention, control and treatment-
Viral metagenomics and virome-
Virus ecology, adaption and evolution-
Applied virology such as nanotechnology-
Viral diagnosis with novelty and comprehensive evaluation.
We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.