{"title":"通过生物信息学分析坐骨神经损伤中溶酶体相关膜蛋白 2A 的转录基因","authors":"Eun Jung Sohn, Kun-Taek Park","doi":"10.1097/WNR.0000000000002066","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have shown that autophagy is activated in response to nerve damage and occurs simultaneously with the initial stages of Schwann cell-mediated demyelination. Although several studies have reported that macroautophagy is involved in the peripheral nerve, the role of chaperone-mediated autophagy (CMA) has not yet been investigated in peripheral nerve injury. The present study investigates the role of CMA in the sciatic nerve. Using a mouse model of sciatic nerve injury, the authors employed immunofluorescence analysis to observe the expression of LAMP2A, a critical marker for CMA. RNA sequencing was performed to observe the transcriptional profile of Lamp2a in Schwann cells. Bioinformatics analysis was carried out to observe the hub genes associated with Lamp2a . Expression of Lamp2a , a key gene in CMA, increased following sciatic nerve injury, based on an immunofluorescence assay. To identify differentially expressed genes using Lamp2a , RNA sequence analysis was conducted using rat Schwann cells overexpressing Lamp2a . The nine hub genes ( Snrpf, Polr1d, Snip1, Aqr, Polr2h, Ssbp1, Mterf3, Adcy6 , and Sbds ) were identified using the CytoHubba plugin of Cytoscape. Functional analysis revealed that Lamp2a overexpression affected the transcription levels of genes associated with mitotic spindle organization and mRNA splicing via the spliceosome. In addition, Polr1d and Snrpf1 were downregulated throughout postnatal development but elevated following sciatic nerve injury, according to a bioinformatics study. CMA may be an integral pathway in sciatic nerve injury via mRNA splicing.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptional genes of lysosome-associated membrane protein 2A in sciatic nerve injuries by bioinformatics.\",\"authors\":\"Eun Jung Sohn, Kun-Taek Park\",\"doi\":\"10.1097/WNR.0000000000002066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have shown that autophagy is activated in response to nerve damage and occurs simultaneously with the initial stages of Schwann cell-mediated demyelination. Although several studies have reported that macroautophagy is involved in the peripheral nerve, the role of chaperone-mediated autophagy (CMA) has not yet been investigated in peripheral nerve injury. The present study investigates the role of CMA in the sciatic nerve. Using a mouse model of sciatic nerve injury, the authors employed immunofluorescence analysis to observe the expression of LAMP2A, a critical marker for CMA. RNA sequencing was performed to observe the transcriptional profile of Lamp2a in Schwann cells. Bioinformatics analysis was carried out to observe the hub genes associated with Lamp2a . Expression of Lamp2a , a key gene in CMA, increased following sciatic nerve injury, based on an immunofluorescence assay. To identify differentially expressed genes using Lamp2a , RNA sequence analysis was conducted using rat Schwann cells overexpressing Lamp2a . The nine hub genes ( Snrpf, Polr1d, Snip1, Aqr, Polr2h, Ssbp1, Mterf3, Adcy6 , and Sbds ) were identified using the CytoHubba plugin of Cytoscape. Functional analysis revealed that Lamp2a overexpression affected the transcription levels of genes associated with mitotic spindle organization and mRNA splicing via the spliceosome. In addition, Polr1d and Snrpf1 were downregulated throughout postnatal development but elevated following sciatic nerve injury, according to a bioinformatics study. CMA may be an integral pathway in sciatic nerve injury via mRNA splicing.</p>\",\"PeriodicalId\":19213,\"journal\":{\"name\":\"Neuroreport\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroreport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNR.0000000000002066\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002066","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Transcriptional genes of lysosome-associated membrane protein 2A in sciatic nerve injuries by bioinformatics.
Recent studies have shown that autophagy is activated in response to nerve damage and occurs simultaneously with the initial stages of Schwann cell-mediated demyelination. Although several studies have reported that macroautophagy is involved in the peripheral nerve, the role of chaperone-mediated autophagy (CMA) has not yet been investigated in peripheral nerve injury. The present study investigates the role of CMA in the sciatic nerve. Using a mouse model of sciatic nerve injury, the authors employed immunofluorescence analysis to observe the expression of LAMP2A, a critical marker for CMA. RNA sequencing was performed to observe the transcriptional profile of Lamp2a in Schwann cells. Bioinformatics analysis was carried out to observe the hub genes associated with Lamp2a . Expression of Lamp2a , a key gene in CMA, increased following sciatic nerve injury, based on an immunofluorescence assay. To identify differentially expressed genes using Lamp2a , RNA sequence analysis was conducted using rat Schwann cells overexpressing Lamp2a . The nine hub genes ( Snrpf, Polr1d, Snip1, Aqr, Polr2h, Ssbp1, Mterf3, Adcy6 , and Sbds ) were identified using the CytoHubba plugin of Cytoscape. Functional analysis revealed that Lamp2a overexpression affected the transcription levels of genes associated with mitotic spindle organization and mRNA splicing via the spliceosome. In addition, Polr1d and Snrpf1 were downregulated throughout postnatal development but elevated following sciatic nerve injury, according to a bioinformatics study. CMA may be an integral pathway in sciatic nerve injury via mRNA splicing.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.