[基于哈达玛德积优化的多层人工神经网络的人体胸部模型电阻抗断层扫描研究]。

Zhenzhong Song, Jianping Li, Jianming Wen, Nen Wan, Jijie Ma, Yu Zhang, Yili Hu, Zengfeng Gao
{"title":"[基于哈达玛德积优化的多层人工神经网络的人体胸部模型电阻抗断层扫描研究]。","authors":"Zhenzhong Song, Jianping Li, Jianming Wen, Nen Wan, Jijie Ma, Yu Zhang, Yili Hu, Zengfeng Gao","doi":"10.7507/1001-5515.202305047","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical impedance tomography (EIT) is a non-radiation, non-invasive visual diagnostic technique. In order to improve the imaging resolution and the removing artifacts capability of the reconstruction algorithms for electrical impedance imaging in human-chest models, the HMANN algorithm was proposed using the Hadamard product to optimize multilayer artificial neural networks (MANN). The reconstructed images of the HMANN algorithm were compared with those of the generalized vector sampled pattern matching (GVSPM) algorithm, truncated singular value decomposition (TSVD) algorithm, backpropagation (BP) neural network algorithm, and traditional MANN algorithm. The simulation results showed that the correlation coefficient of the reconstructed images obtained by the HMANN algorithm was increased by 17.30% in the circular cross-section models compared with the MANN algorithm. It was increased by 13.98% in the lung cross-section models. In the lung cross-section models, some of the correlation coefficients obtained by the HMANN algorithm would decrease. Nevertheless, the HMANN algorithm retained the image information of the MANN algorithm in all models, and the HMANN algorithm had fewer artifacts in the reconstructed images. The distinguishability between the objects and the background was better compared with the traditional MANN algorithm. The algorithm could improve the correlation coefficient of the reconstructed images, and effectively remove the artifacts, which provides a new direction to effectively improve the quality of the reconstructed images for EIT.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 3","pages":"439-446"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208659/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Research of electrical impedance tomography based on multilayer artificial neural network optimized by Hadamard product for human-chest models].\",\"authors\":\"Zhenzhong Song, Jianping Li, Jianming Wen, Nen Wan, Jijie Ma, Yu Zhang, Yili Hu, Zengfeng Gao\",\"doi\":\"10.7507/1001-5515.202305047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrical impedance tomography (EIT) is a non-radiation, non-invasive visual diagnostic technique. In order to improve the imaging resolution and the removing artifacts capability of the reconstruction algorithms for electrical impedance imaging in human-chest models, the HMANN algorithm was proposed using the Hadamard product to optimize multilayer artificial neural networks (MANN). The reconstructed images of the HMANN algorithm were compared with those of the generalized vector sampled pattern matching (GVSPM) algorithm, truncated singular value decomposition (TSVD) algorithm, backpropagation (BP) neural network algorithm, and traditional MANN algorithm. The simulation results showed that the correlation coefficient of the reconstructed images obtained by the HMANN algorithm was increased by 17.30% in the circular cross-section models compared with the MANN algorithm. It was increased by 13.98% in the lung cross-section models. In the lung cross-section models, some of the correlation coefficients obtained by the HMANN algorithm would decrease. Nevertheless, the HMANN algorithm retained the image information of the MANN algorithm in all models, and the HMANN algorithm had fewer artifacts in the reconstructed images. The distinguishability between the objects and the background was better compared with the traditional MANN algorithm. The algorithm could improve the correlation coefficient of the reconstructed images, and effectively remove the artifacts, which provides a new direction to effectively improve the quality of the reconstructed images for EIT.</p>\",\"PeriodicalId\":39324,\"journal\":{\"name\":\"生物医学工程学杂志\",\"volume\":\"41 3\",\"pages\":\"439-446\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程学杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.7507/1001-5515.202305047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202305047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

电阻抗断层成像(EIT)是一种无辐射、无创伤的视觉诊断技术。为了提高人体胸腔模型电阻抗成像重建算法的成像分辨率和去除伪影的能力,提出了利用哈达玛积优化多层人工神经网络(MANN)的 HMANN 算法。HMANN 算法的重建图像与广义矢量采样模式匹配(GVSPM)算法、截断奇异值分解(TSVD)算法、反向传播(BP)神经网络算法和传统 MANN 算法的重建图像进行了比较。仿真结果表明,在圆形截面模型中,HMANN 算法得到的重建图像的相关系数比 MANN 算法提高了 17.30%。在肺横截面模型中,相关系数提高了 13.98%。在肺横截面模型中,HMANN 算法得到的一些相关系数会降低。不过,在所有模型中,HMANN 算法都保留了 MANN 算法的图像信息,而且 HMANN 算法重建图像中的伪影较少。与传统的 MANN 算法相比,物体与背景之间的可区分度更高。该算法可以提高重建图像的相关系数,有效去除伪影,为有效提高 EIT 重建图像的质量提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Research of electrical impedance tomography based on multilayer artificial neural network optimized by Hadamard product for human-chest models].

Electrical impedance tomography (EIT) is a non-radiation, non-invasive visual diagnostic technique. In order to improve the imaging resolution and the removing artifacts capability of the reconstruction algorithms for electrical impedance imaging in human-chest models, the HMANN algorithm was proposed using the Hadamard product to optimize multilayer artificial neural networks (MANN). The reconstructed images of the HMANN algorithm were compared with those of the generalized vector sampled pattern matching (GVSPM) algorithm, truncated singular value decomposition (TSVD) algorithm, backpropagation (BP) neural network algorithm, and traditional MANN algorithm. The simulation results showed that the correlation coefficient of the reconstructed images obtained by the HMANN algorithm was increased by 17.30% in the circular cross-section models compared with the MANN algorithm. It was increased by 13.98% in the lung cross-section models. In the lung cross-section models, some of the correlation coefficients obtained by the HMANN algorithm would decrease. Nevertheless, the HMANN algorithm retained the image information of the MANN algorithm in all models, and the HMANN algorithm had fewer artifacts in the reconstructed images. The distinguishability between the objects and the background was better compared with the traditional MANN algorithm. The algorithm could improve the correlation coefficient of the reconstructed images, and effectively remove the artifacts, which provides a new direction to effectively improve the quality of the reconstructed images for EIT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
期刊最新文献
[A lightweight convolutional neural network for myositis classification from muscle ultrasound images]. [A review on depth perception techniques in organoid images]. [Advances in nanostructured surfaces for enhanced mechano-bactericidal applications]. [Advances in the diagnosis of prostate cancer based on image fusion]. [Analysis of nerve excitability in the dentate gyrus of the hippocampus in cerebral ischaemia-reperfusion mice].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1