{"title":"小鼠摄食行为和能量平衡的变化与体重增加的时间相关性。","authors":"Payam A. Fathi, Michelle B. Bales, Julio E. Ayala","doi":"10.1002/oby.24052","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Obesity is characterized by dysregulated homeostatic mechanisms resulting in positive energy balance; however, when this dysregulation occurs is unknown. We assessed the time course of alterations to behaviors promoting weight gain in male and female mice switched to an obesogenic high-fat diet (HFD).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Male and female C57BL/6J mice were housed in metabolic chambers and were switched from chow to a 60% or 45% HFD for 4 and 3 weeks, respectively. Food intake, meal patterns, energy expenditure (EE), and body weight were continuously measured. A separate cohort of male mice was switched from chow to a 60% HFD and was given access to locked or unlocked running wheels.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Switching mice to obesogenic diets promotes transient bouts of hyperphagia during the first 2 weeks followed by persistent caloric hyperphagia. EE increases but not sufficiently enough to offset increased caloric intake, resulting in a sustained net positive energy balance. Hyperphagia is associated with consumption of calorically larger meals (impaired satiation) more frequently (impaired satiety), particularly during the light cycle. Running wheel exercise delays weight gain in male mice fed a 60% HFD by enhancing satiation and increasing EE. However, exercise effects on satiation are no longer apparent after 2 weeks, coinciding with weight gain.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Exposure to obesogenic diets engages homeostatic regulatory mechanisms for ~2 weeks that ultimately fail, and consequent weight gain is characterized by impaired satiation and satiety. Insights into the etiology of obesity can be obtained by investigating changes to satiation and satiety mechanisms during the initial ~2 weeks of HFD exposure.</p>\n </section>\n </div>","PeriodicalId":215,"journal":{"name":"Obesity","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/oby.24052","citationCount":"0","resultStr":"{\"title\":\"Time-dependent changes in feeding behavior and energy balance associated with weight gain in mice fed obesogenic diets\",\"authors\":\"Payam A. Fathi, Michelle B. Bales, Julio E. Ayala\",\"doi\":\"10.1002/oby.24052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>Obesity is characterized by dysregulated homeostatic mechanisms resulting in positive energy balance; however, when this dysregulation occurs is unknown. We assessed the time course of alterations to behaviors promoting weight gain in male and female mice switched to an obesogenic high-fat diet (HFD).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Male and female C57BL/6J mice were housed in metabolic chambers and were switched from chow to a 60% or 45% HFD for 4 and 3 weeks, respectively. Food intake, meal patterns, energy expenditure (EE), and body weight were continuously measured. A separate cohort of male mice was switched from chow to a 60% HFD and was given access to locked or unlocked running wheels.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Switching mice to obesogenic diets promotes transient bouts of hyperphagia during the first 2 weeks followed by persistent caloric hyperphagia. EE increases but not sufficiently enough to offset increased caloric intake, resulting in a sustained net positive energy balance. Hyperphagia is associated with consumption of calorically larger meals (impaired satiation) more frequently (impaired satiety), particularly during the light cycle. Running wheel exercise delays weight gain in male mice fed a 60% HFD by enhancing satiation and increasing EE. However, exercise effects on satiation are no longer apparent after 2 weeks, coinciding with weight gain.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Exposure to obesogenic diets engages homeostatic regulatory mechanisms for ~2 weeks that ultimately fail, and consequent weight gain is characterized by impaired satiation and satiety. Insights into the etiology of obesity can be obtained by investigating changes to satiation and satiety mechanisms during the initial ~2 weeks of HFD exposure.</p>\\n </section>\\n </div>\",\"PeriodicalId\":215,\"journal\":{\"name\":\"Obesity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/oby.24052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Obesity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/oby.24052\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Obesity","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/oby.24052","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Time-dependent changes in feeding behavior and energy balance associated with weight gain in mice fed obesogenic diets
Objective
Obesity is characterized by dysregulated homeostatic mechanisms resulting in positive energy balance; however, when this dysregulation occurs is unknown. We assessed the time course of alterations to behaviors promoting weight gain in male and female mice switched to an obesogenic high-fat diet (HFD).
Methods
Male and female C57BL/6J mice were housed in metabolic chambers and were switched from chow to a 60% or 45% HFD for 4 and 3 weeks, respectively. Food intake, meal patterns, energy expenditure (EE), and body weight were continuously measured. A separate cohort of male mice was switched from chow to a 60% HFD and was given access to locked or unlocked running wheels.
Results
Switching mice to obesogenic diets promotes transient bouts of hyperphagia during the first 2 weeks followed by persistent caloric hyperphagia. EE increases but not sufficiently enough to offset increased caloric intake, resulting in a sustained net positive energy balance. Hyperphagia is associated with consumption of calorically larger meals (impaired satiation) more frequently (impaired satiety), particularly during the light cycle. Running wheel exercise delays weight gain in male mice fed a 60% HFD by enhancing satiation and increasing EE. However, exercise effects on satiation are no longer apparent after 2 weeks, coinciding with weight gain.
Conclusions
Exposure to obesogenic diets engages homeostatic regulatory mechanisms for ~2 weeks that ultimately fail, and consequent weight gain is characterized by impaired satiation and satiety. Insights into the etiology of obesity can be obtained by investigating changes to satiation and satiety mechanisms during the initial ~2 weeks of HFD exposure.
期刊介绍:
Obesity is the official journal of The Obesity Society and is the premier source of information for increasing knowledge, fostering translational research from basic to population science, and promoting better treatment for people with obesity. Obesity publishes important peer-reviewed research and cutting-edge reviews, commentaries, and public health and medical developments.