原子/分子层沉积对苯二甲酸铁薄膜中的化学键和晶体结构方案

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2024-06-25 DOI:10.1021/acs.chemmater.4c00555
Topias Jussila, Anish Philip, Víctor Rubio-Giménez, Kim Eklund, Sami Vasala, Pieter Glatzel, Johan Lindén, Teruki Motohashi, Antti J. Karttunen, Rob Ameloot and Maarit Karppinen*, 
{"title":"原子/分子层沉积对苯二甲酸铁薄膜中的化学键和晶体结构方案","authors":"Topias Jussila,&nbsp;Anish Philip,&nbsp;Víctor Rubio-Giménez,&nbsp;Kim Eklund,&nbsp;Sami Vasala,&nbsp;Pieter Glatzel,&nbsp;Johan Lindén,&nbsp;Teruki Motohashi,&nbsp;Antti J. Karttunen,&nbsp;Rob Ameloot and Maarit Karppinen*,&nbsp;","doi":"10.1021/acs.chemmater.4c00555","DOIUrl":null,"url":null,"abstract":"<p >Advanced deposition routes are vital for the growth of functional metal–organic thin films. The gas-phase atomic/molecular layer deposition (ALD/MLD) technique provides solvent-free and uniform nanoscale thin films with unprecedented thickness control and allows straightforward device integration. Most excitingly, the ALD/MLD technique can enable the in situ growth of novel crystalline metal–organic materials. An exquisite example is iron-terephthalate (Fe-BDC), which is one of the most appealing metal–organic framework (MOF) type materials and thus widely studied in bulk form owing to its attractive potential in photocatalysis, biomedicine, and beyond. Resolving the chemistry and structural features of new thin film materials requires an extended selection of characterization and modeling techniques. Here we demonstrate how the unique features of the ALD/MLD grown in situ crystalline Fe-BDC thin films, different from the bulk Fe-BDC MOFs, can be resolved through techniques such as synchrotron grazing-incidence X-ray diffraction (GIXRD), Mössbauer spectroscopy, and resonant inelastic X-ray scattering (RIXS) and crystal structure predictions. The investigations of the Fe-BDC thin films, containing both trivalent and divalent iron, converge toward a novel crystalline Fe(III)-BDC monoclinic phase with space group <i>C</i>2/<i>c</i> and an amorphous Fe(II)-BDC phase. Finally, we demonstrate the excellent thermal stability of our Fe-BDC thin films.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c00555","citationCount":"0","resultStr":"{\"title\":\"Chemical Bonding and Crystal Structure Schemes in Atomic/Molecular Layer Deposited Fe-Terephthalate Thin Films\",\"authors\":\"Topias Jussila,&nbsp;Anish Philip,&nbsp;Víctor Rubio-Giménez,&nbsp;Kim Eklund,&nbsp;Sami Vasala,&nbsp;Pieter Glatzel,&nbsp;Johan Lindén,&nbsp;Teruki Motohashi,&nbsp;Antti J. Karttunen,&nbsp;Rob Ameloot and Maarit Karppinen*,&nbsp;\",\"doi\":\"10.1021/acs.chemmater.4c00555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Advanced deposition routes are vital for the growth of functional metal–organic thin films. The gas-phase atomic/molecular layer deposition (ALD/MLD) technique provides solvent-free and uniform nanoscale thin films with unprecedented thickness control and allows straightforward device integration. Most excitingly, the ALD/MLD technique can enable the in situ growth of novel crystalline metal–organic materials. An exquisite example is iron-terephthalate (Fe-BDC), which is one of the most appealing metal–organic framework (MOF) type materials and thus widely studied in bulk form owing to its attractive potential in photocatalysis, biomedicine, and beyond. Resolving the chemistry and structural features of new thin film materials requires an extended selection of characterization and modeling techniques. Here we demonstrate how the unique features of the ALD/MLD grown in situ crystalline Fe-BDC thin films, different from the bulk Fe-BDC MOFs, can be resolved through techniques such as synchrotron grazing-incidence X-ray diffraction (GIXRD), Mössbauer spectroscopy, and resonant inelastic X-ray scattering (RIXS) and crystal structure predictions. The investigations of the Fe-BDC thin films, containing both trivalent and divalent iron, converge toward a novel crystalline Fe(III)-BDC monoclinic phase with space group <i>C</i>2/<i>c</i> and an amorphous Fe(II)-BDC phase. Finally, we demonstrate the excellent thermal stability of our Fe-BDC thin films.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c00555\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00555\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c00555","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

先进的沉积路线对于功能性金属有机薄膜的生长至关重要。气相原子/分子层沉积(ALD/MLD)技术可提供无溶剂、均匀的纳米级薄膜,具有前所未有的厚度控制能力,可直接实现设备集成。最令人兴奋的是,ALD/MLD 技术可以实现新型结晶金属有机材料的原位生长。对苯二甲酸铁(Fe-BDC)就是一个很好的例子,它是最有吸引力的金属有机框架(MOF)型材料之一,由于在光催化、生物医学等领域具有巨大的潜力,因此被广泛研究。研究新型薄膜材料的化学和结构特征需要选择多种表征和建模技术。在这里,我们展示了如何通过同步辐射掠入射 X 射线衍射 (GIXRD)、莫斯鲍尔光谱、共振非弹性 X 射线散射 (RIXS) 和晶体结构预测等技术来解析 ALD/MLD 生长的原位结晶 Fe-BDC 薄膜不同于块体 Fe-BDC MOFs 的独特特征。对含有三价铁和二价铁的铁-BDC 薄膜的研究表明,这种薄膜具有空间群为 C2/c 的新型结晶铁(III)-BDC 单斜相和无定形铁(II)-BDC 相。最后,我们展示了铁-BDC 薄膜出色的热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemical Bonding and Crystal Structure Schemes in Atomic/Molecular Layer Deposited Fe-Terephthalate Thin Films

Advanced deposition routes are vital for the growth of functional metal–organic thin films. The gas-phase atomic/molecular layer deposition (ALD/MLD) technique provides solvent-free and uniform nanoscale thin films with unprecedented thickness control and allows straightforward device integration. Most excitingly, the ALD/MLD technique can enable the in situ growth of novel crystalline metal–organic materials. An exquisite example is iron-terephthalate (Fe-BDC), which is one of the most appealing metal–organic framework (MOF) type materials and thus widely studied in bulk form owing to its attractive potential in photocatalysis, biomedicine, and beyond. Resolving the chemistry and structural features of new thin film materials requires an extended selection of characterization and modeling techniques. Here we demonstrate how the unique features of the ALD/MLD grown in situ crystalline Fe-BDC thin films, different from the bulk Fe-BDC MOFs, can be resolved through techniques such as synchrotron grazing-incidence X-ray diffraction (GIXRD), Mössbauer spectroscopy, and resonant inelastic X-ray scattering (RIXS) and crystal structure predictions. The investigations of the Fe-BDC thin films, containing both trivalent and divalent iron, converge toward a novel crystalline Fe(III)-BDC monoclinic phase with space group C2/c and an amorphous Fe(II)-BDC phase. Finally, we demonstrate the excellent thermal stability of our Fe-BDC thin films.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Antiferromagnetic Ordering in the Frustrated Rare-Earth Chain Systems M2Cl3 (M = Gd, Tb) Advancing the Performance of Lithium-Rich Oxides in Concert with Inherent Complexities: Domain-Selective Substitutions Issue Editorial Masthead Issue Publication Information Data-Driven High-Throughput Screening and Experimental Realization of Ag2B(IV)B′(VI)O6 under Negative Chemical-Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1