醋酸阴离子存在时π-共轭对蒽-脲衍生物激发态分子间质子转移反应的影响

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2024-06-28 DOI:10.1039/D4CP01869A
Atsushi Tachibanaki, Toru Matsui and Yoshinobu Nishimura
{"title":"醋酸阴离子存在时π-共轭对蒽-脲衍生物激发态分子间质子转移反应的影响","authors":"Atsushi Tachibanaki, Toru Matsui and Yoshinobu Nishimura","doi":"10.1039/D4CP01869A","DOIUrl":null,"url":null,"abstract":"<p >This study investigated emissive urea compounds with an anthryl moiety on one side and a substituent group (biphenyl, naphthyl, benzyl, or cyclohexyl) on the other side across from the urea group. This was performed to determine the contribution of π-conjugation on a substituent group to excited-state intermolecular proton-transfer (ESPT) reactions in the presence of acetate anions. Fluorescence lifetime measurements revealed that the rate constant of the ESPT reaction from the normal form to the tautomer form increased with the length of the π-conjugation. Considering that there were a few differences among the wavelengths of the fluorescence maxima for the anthracene–urea derivatives in the presence of acetate anions, we observed that the extension of π-conjugation promoted tautomer formation. This maintained the energy levels of the normal and tautomer forms in the excited state. Furthermore, an anthracene–urea derivative without π-conjugation did not undergo a reverse ESPT reaction, implying that π-conjugation is considerably involved in the reverse ESPT reaction from the tautomer form to the normal form.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"π-Conjugation effects on excited-state intermolecular proton-transfer reactions of anthracene–urea derivatives in the presence of acetate anions†\",\"authors\":\"Atsushi Tachibanaki, Toru Matsui and Yoshinobu Nishimura\",\"doi\":\"10.1039/D4CP01869A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigated emissive urea compounds with an anthryl moiety on one side and a substituent group (biphenyl, naphthyl, benzyl, or cyclohexyl) on the other side across from the urea group. This was performed to determine the contribution of π-conjugation on a substituent group to excited-state intermolecular proton-transfer (ESPT) reactions in the presence of acetate anions. Fluorescence lifetime measurements revealed that the rate constant of the ESPT reaction from the normal form to the tautomer form increased with the length of the π-conjugation. Considering that there were a few differences among the wavelengths of the fluorescence maxima for the anthracene–urea derivatives in the presence of acetate anions, we observed that the extension of π-conjugation promoted tautomer formation. This maintained the energy levels of the normal and tautomer forms in the excited state. Furthermore, an anthracene–urea derivative without π-conjugation did not undergo a reverse ESPT reaction, implying that π-conjugation is considerably involved in the reverse ESPT reaction from the tautomer form to the normal form.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp01869a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp01869a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了一侧为蒽基、另一侧为取代基(联苯基、萘基、苄基或环己基)且与脲基隔开的发射型脲化合物。这项研究的目的是确定在醋酸阴离子存在的情况下,取代基上的π-共轭对激发态分子间质子转移(ESPT)反应的贡献。荧光寿命测量结果表明,从正常形式到同系物形式的 ESPT 反应的速率常数随 π 键合长度的增加而增加。考虑到蒽-脲衍生物在醋酸阴离子存在下的荧光最大值波长存在一些差异,我们观察到,π-共轭的延长促进了同系物的形成。这使正常形式和同系物形式的能级保持在激发态。此外,没有π-共轭的蒽-脲衍生物不会发生反向 ESPT 反应,这意味着π-共轭在很大程度上参与了从同系物形式到正常形式的反向 ESPT 反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
π-Conjugation effects on excited-state intermolecular proton-transfer reactions of anthracene–urea derivatives in the presence of acetate anions†

This study investigated emissive urea compounds with an anthryl moiety on one side and a substituent group (biphenyl, naphthyl, benzyl, or cyclohexyl) on the other side across from the urea group. This was performed to determine the contribution of π-conjugation on a substituent group to excited-state intermolecular proton-transfer (ESPT) reactions in the presence of acetate anions. Fluorescence lifetime measurements revealed that the rate constant of the ESPT reaction from the normal form to the tautomer form increased with the length of the π-conjugation. Considering that there were a few differences among the wavelengths of the fluorescence maxima for the anthracene–urea derivatives in the presence of acetate anions, we observed that the extension of π-conjugation promoted tautomer formation. This maintained the energy levels of the normal and tautomer forms in the excited state. Furthermore, an anthracene–urea derivative without π-conjugation did not undergo a reverse ESPT reaction, implying that π-conjugation is considerably involved in the reverse ESPT reaction from the tautomer form to the normal form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
A first-principles study of organic Lewis bases for passivating tin-based perovskite solar cells. The indanone N-H type excited-state intramolecular proton transfer (ESIPT); the observation of a mechanically induced ESIPT reaction. Simulations of photoinduced processes with the exact factorization: State of the art and perspectives Complete kinetic and photochemical characterization of the multi-step photochromic reaction of DASA Tunable electronic and optoelectronic characteristics of two-dimensional β-AsP monolayer: A first-principles study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1