构建封装在多通道碳纳米纤维中的 Co9S8/SnS 异质结构,作为钠离子电池的长期稳定阳极

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2024-06-27 DOI:10.1016/j.jallcom.2024.175376
Junjie Dai, Balaji Murugesan, Weidi Lin, Chao Wang, Suyuan Zhang, Jun Wu, Darwin B. Putungan, Yurong Cai
{"title":"构建封装在多通道碳纳米纤维中的 Co9S8/SnS 异质结构,作为钠离子电池的长期稳定阳极","authors":"Junjie Dai, Balaji Murugesan, Weidi Lin, Chao Wang, Suyuan Zhang, Jun Wu, Darwin B. Putungan, Yurong Cai","doi":"10.1016/j.jallcom.2024.175376","DOIUrl":null,"url":null,"abstract":"This study presents the design and fabrication of multi-channel self-supported anode materials CoS/SnS@MCNFs, through the electrospinning technique. The high compatibility of CoS and SnS at the interface enables the synthesis of a more complete heterostructure within the material, enhancing the electrochemical reaction process through rational heterostructure design. Additionally, the incorporation of high theoretical capacity SnS improves sodium storage performance. The design of multi-channel carbon nanofibers (MCNFs) effectively addresses challenges such as material volume expansion and metal particle aggregation during cycling by providing large specific surface areas and enabling carbon encapsulation. The resulting pore structure and heterostructure formation, coupled with introduction of more defects, enhance the availability of Na active sites for electrochemically reversible processes. As expected, CoS/SnS@MCNFs exhibit remarkable initial coulombic efficiency (ICE = 92.6 %) and demonstrate stable long-term cycling performance (222.5 mA h g at 2 A g after 400 cycles) for sodium storage, with only a 0.18 % decay rate per cycle. These findings suggest promising application for the electrode material in sustained high-current discharges and long-endurance performance.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Co9S8/SnS heterostructures encapsulated in multi-channel carbon nanofibers as long-term stable anodes for sodium-ion batteries\",\"authors\":\"Junjie Dai, Balaji Murugesan, Weidi Lin, Chao Wang, Suyuan Zhang, Jun Wu, Darwin B. Putungan, Yurong Cai\",\"doi\":\"10.1016/j.jallcom.2024.175376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the design and fabrication of multi-channel self-supported anode materials CoS/SnS@MCNFs, through the electrospinning technique. The high compatibility of CoS and SnS at the interface enables the synthesis of a more complete heterostructure within the material, enhancing the electrochemical reaction process through rational heterostructure design. Additionally, the incorporation of high theoretical capacity SnS improves sodium storage performance. The design of multi-channel carbon nanofibers (MCNFs) effectively addresses challenges such as material volume expansion and metal particle aggregation during cycling by providing large specific surface areas and enabling carbon encapsulation. The resulting pore structure and heterostructure formation, coupled with introduction of more defects, enhance the availability of Na active sites for electrochemically reversible processes. As expected, CoS/SnS@MCNFs exhibit remarkable initial coulombic efficiency (ICE = 92.6 %) and demonstrate stable long-term cycling performance (222.5 mA h g at 2 A g after 400 cycles) for sodium storage, with only a 0.18 % decay rate per cycle. These findings suggest promising application for the electrode material in sustained high-current discharges and long-endurance performance.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2024.175376\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.175376","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过电纺丝技术设计并制备了多通道自支撑阳极材料 CoS/SnS@MCNFs。CoS 和 SnS 在界面上的高度相容性使材料内部合成了更完整的异质结构,通过合理的异质结构设计增强了电化学反应过程。此外,高理论容量 SnS 的加入提高了钠的存储性能。多通道碳纳米纤维(MCNF)的设计通过提供大的比表面积和实现碳封装,有效地解决了材料体积膨胀和循环过程中金属颗粒聚集等难题。由此形成的孔隙结构和异质结构,加上更多缺陷的引入,提高了电化学可逆过程中 Na 活性位点的可用性。正如预期的那样,CoS/SnS@MCNFs 在储钠方面表现出卓越的初始库仑效率(ICE = 92.6 %)和稳定的长期循环性能(400 次循环后在 2 A g 条件下为 222.5 mA h g),每个循环的衰减率仅为 0.18 %。这些研究结果表明,这种电极材料在持续大电流放电和长期耐久性能方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of Co9S8/SnS heterostructures encapsulated in multi-channel carbon nanofibers as long-term stable anodes for sodium-ion batteries
This study presents the design and fabrication of multi-channel self-supported anode materials CoS/SnS@MCNFs, through the electrospinning technique. The high compatibility of CoS and SnS at the interface enables the synthesis of a more complete heterostructure within the material, enhancing the electrochemical reaction process through rational heterostructure design. Additionally, the incorporation of high theoretical capacity SnS improves sodium storage performance. The design of multi-channel carbon nanofibers (MCNFs) effectively addresses challenges such as material volume expansion and metal particle aggregation during cycling by providing large specific surface areas and enabling carbon encapsulation. The resulting pore structure and heterostructure formation, coupled with introduction of more defects, enhance the availability of Na active sites for electrochemically reversible processes. As expected, CoS/SnS@MCNFs exhibit remarkable initial coulombic efficiency (ICE = 92.6 %) and demonstrate stable long-term cycling performance (222.5 mA h g at 2 A g after 400 cycles) for sodium storage, with only a 0.18 % decay rate per cycle. These findings suggest promising application for the electrode material in sustained high-current discharges and long-endurance performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
Photocatalytic oxidative desulfurization of a model fuel using S-doped TiO2/BiVO4 composites: A combination of experimental and theoretical study Synergistic enhancement of photocatalytic hydrogen peroxide production activity in CN/rBOB composite through double field effect Enhanced color rendering index and thermal stability of Ca2GdNbO6: Dy3+ phosphors by co-doping Sm3+ ions Microstructure and wear performance of ex/in-situ TiC reinforced CoCrFeNiW0.4Si0.2 high-entropy alloy coatings by laser cladding Air plasma-treated titanium dioxide nanotubes for enhanced photoelectrochemical and photocatalytic properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1