利用自旋锁定激发长效核自旋秩序:几何形式主义

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2024-06-28 DOI:10.1039/d4cp01995d
Manjeet Mudgil, Narayanan D Kurur
{"title":"利用自旋锁定激发长效核自旋秩序:几何形式主义","authors":"Manjeet Mudgil, Narayanan D Kurur","doi":"10.1039/d4cp01995d","DOIUrl":null,"url":null,"abstract":"Over the last two decades, numerous pulse sequences have been introduced for the excitation of long-lived spin order (LLS) in high fields. The long continuous wave (CW) or adiabatic pulses used in the SLIC and APSOC sequences should remind one of the spin-locking pulses that are used to induce cross-polarization (CP). Dynamics during these spin-lockings in CP experiments are explained through a geometrical formalism. However, the SLIC and APSOC sequences are described in terms of energy-level picture or in the language of level anti- crossings. Motivated by this analogy, this work presents here a geometrical formalism for the LLS excitation by spin-locking pulses in weakly coupled systems. The formalism is similar to the one used for CP dynamics and reveals new pulse sequences involving CW or adiabatic locking. A similar formalism for the sustaining period of LLS is also provided, which reveals new features of the dynamics and suggests the usage of modulated spin-lockings for proper LLS sustaining. For strong and intermediate regimes, although a simple geometrical formalism seems infeasible, a new pulse sequence that employs a ramp-down adiabatic pulse for both LLS excitation and reconversion to observables in both these regimes is presented here. Given the similarities between LLS excitation and well-developed CP, it may be anticipated that this work would initiate the search for new LLS excitation methods and applications.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excitation of Long-lived Nuclear Spin Order using Spin- locking: A Geometrical Formalism\",\"authors\":\"Manjeet Mudgil, Narayanan D Kurur\",\"doi\":\"10.1039/d4cp01995d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last two decades, numerous pulse sequences have been introduced for the excitation of long-lived spin order (LLS) in high fields. The long continuous wave (CW) or adiabatic pulses used in the SLIC and APSOC sequences should remind one of the spin-locking pulses that are used to induce cross-polarization (CP). Dynamics during these spin-lockings in CP experiments are explained through a geometrical formalism. However, the SLIC and APSOC sequences are described in terms of energy-level picture or in the language of level anti- crossings. Motivated by this analogy, this work presents here a geometrical formalism for the LLS excitation by spin-locking pulses in weakly coupled systems. The formalism is similar to the one used for CP dynamics and reveals new pulse sequences involving CW or adiabatic locking. A similar formalism for the sustaining period of LLS is also provided, which reveals new features of the dynamics and suggests the usage of modulated spin-lockings for proper LLS sustaining. For strong and intermediate regimes, although a simple geometrical formalism seems infeasible, a new pulse sequence that employs a ramp-down adiabatic pulse for both LLS excitation and reconversion to observables in both these regimes is presented here. Given the similarities between LLS excitation and well-developed CP, it may be anticipated that this work would initiate the search for new LLS excitation methods and applications.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cp01995d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp01995d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年里,为了在高场中激发长寿命自旋阶(LLS),引入了许多脉冲序列。在 SLIC 和 APSOC 序列中使用的长连续波(CW)或绝热脉冲会让人联想到用于诱导交叉极化(CP)的自旋锁定脉冲。在 CP 实验中,这些自旋锁定期间的动力学是通过几何形式主义来解释的。然而,SLIC 和 APSOC 序列是用能级图或能级反交叉语言来描述的。受这一类比的启发,本研究提出了弱耦合系统中自旋锁定脉冲激发 LLS 的几何形式主义。该形式主义与 CP 动力学所用的形式主义类似,并揭示了涉及 CW 或绝热锁定的新脉冲序列。我们还为 LLS 的维持期提供了一个类似的形式主义,它揭示了动力学的新特征,并建议使用调制自旋锁定来实现适当的 LLS 维持。对于强态和中间态,虽然简单的几何形式主义似乎并不可行,但本文介绍了一种新的脉冲序列,它采用了斜坡下降绝热脉冲来激发 LLS 并将其重新转换为这两种态的观测值。鉴于 LLS 激发和成熟的 CP 之间的相似性,可以预见这项工作将启动对新的 LLS 激发方法和应用的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Excitation of Long-lived Nuclear Spin Order using Spin- locking: A Geometrical Formalism
Over the last two decades, numerous pulse sequences have been introduced for the excitation of long-lived spin order (LLS) in high fields. The long continuous wave (CW) or adiabatic pulses used in the SLIC and APSOC sequences should remind one of the spin-locking pulses that are used to induce cross-polarization (CP). Dynamics during these spin-lockings in CP experiments are explained through a geometrical formalism. However, the SLIC and APSOC sequences are described in terms of energy-level picture or in the language of level anti- crossings. Motivated by this analogy, this work presents here a geometrical formalism for the LLS excitation by spin-locking pulses in weakly coupled systems. The formalism is similar to the one used for CP dynamics and reveals new pulse sequences involving CW or adiabatic locking. A similar formalism for the sustaining period of LLS is also provided, which reveals new features of the dynamics and suggests the usage of modulated spin-lockings for proper LLS sustaining. For strong and intermediate regimes, although a simple geometrical formalism seems infeasible, a new pulse sequence that employs a ramp-down adiabatic pulse for both LLS excitation and reconversion to observables in both these regimes is presented here. Given the similarities between LLS excitation and well-developed CP, it may be anticipated that this work would initiate the search for new LLS excitation methods and applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
Isothermal and non-isothermal transport properties of diluted fullerene binary and ternary aromatic solvent mixtures. Characterization of changes in the electronic structure of platinum sub-nanoclusters supported on graphene induced by oxygen adsorption. Molecular dynamics in the gas phase. Modeling the kinetics of hydrogen abstraction reactions in nitrogen-containing compounds via group additivity. Understanding the electrochemical properties of Mg-doped Li2MnO3: first-principles calculations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1