反式硫化还是 H2S 释放?了解莹硫化物化学生物学的全貌

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-06-27 DOI:10.1021/jacs.4c05874
Kaylin G. Fosnacht, Jyoti Sharma, Pier Alexandre Champagne* and Michael D. Pluth*, 
{"title":"反式硫化还是 H2S 释放?了解莹硫化物化学生物学的全貌","authors":"Kaylin G. Fosnacht,&nbsp;Jyoti Sharma,&nbsp;Pier Alexandre Champagne* and Michael D. Pluth*,&nbsp;","doi":"10.1021/jacs.4c05874","DOIUrl":null,"url":null,"abstract":"<p >Persulfides (RSSH) are biologically important reactive sulfur species that are endogenously produced, protect key cysteine residues from irreversible oxidation, and are important intermediates during different enzymatic processes. Although persulfides are stronger nucleophiles than their thiol counterparts, persulfides can also act as electrophiles in their neutral, protonated form in specific environments. Moreover, persulfides are electrophilic at both sulfur atoms, and the reaction with a thiolate can lead to either H<sub>2</sub>S release with disulfide formation or alternatively result in transpersulfidation. Despite the broad acceptance of these reaction pathways, the specific properties that control whether persulfides react through the H<sub>2</sub>S-releasing or transpersulfidation pathway remain elusive. Herein, we use a combined computational and experimental approach to directly investigate the reactivity between persulfides and thiols to answer these questions. Using density functional theory (DFT) calculations, we demonstrate that increasing steric bulk or electron withdrawal near the persulfide can shunt persulfide reactivity through the transpersulfidation pathway. Building from these insights, we use a synthetic persulfide donor and an <i>N</i>-iodoacetyl <span>l</span>-tyrosine methyl ester (TME-IAM) trapping agent to experimentally monitor and measure transpersulfidation from a bulky penicillamine-based persulfide to a cysteine-based thiol, which, to the best of our knowledge, is the first direct observation of transpersulfidation between low-molecular-weight species. Taken together, these combined approaches highlight how the properties of persulfides are directly impacted by local environments, which has significant impacts in understanding the complex chemical biology of these reactive species.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transpersulfidation or H2S Release? Understanding the Landscape of Persulfide Chemical Biology\",\"authors\":\"Kaylin G. Fosnacht,&nbsp;Jyoti Sharma,&nbsp;Pier Alexandre Champagne* and Michael D. Pluth*,&nbsp;\",\"doi\":\"10.1021/jacs.4c05874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Persulfides (RSSH) are biologically important reactive sulfur species that are endogenously produced, protect key cysteine residues from irreversible oxidation, and are important intermediates during different enzymatic processes. Although persulfides are stronger nucleophiles than their thiol counterparts, persulfides can also act as electrophiles in their neutral, protonated form in specific environments. Moreover, persulfides are electrophilic at both sulfur atoms, and the reaction with a thiolate can lead to either H<sub>2</sub>S release with disulfide formation or alternatively result in transpersulfidation. Despite the broad acceptance of these reaction pathways, the specific properties that control whether persulfides react through the H<sub>2</sub>S-releasing or transpersulfidation pathway remain elusive. Herein, we use a combined computational and experimental approach to directly investigate the reactivity between persulfides and thiols to answer these questions. Using density functional theory (DFT) calculations, we demonstrate that increasing steric bulk or electron withdrawal near the persulfide can shunt persulfide reactivity through the transpersulfidation pathway. Building from these insights, we use a synthetic persulfide donor and an <i>N</i>-iodoacetyl <span>l</span>-tyrosine methyl ester (TME-IAM) trapping agent to experimentally monitor and measure transpersulfidation from a bulky penicillamine-based persulfide to a cysteine-based thiol, which, to the best of our knowledge, is the first direct observation of transpersulfidation between low-molecular-weight species. Taken together, these combined approaches highlight how the properties of persulfides are directly impacted by local environments, which has significant impacts in understanding the complex chemical biology of these reactive species.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c05874\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c05874","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过硫化物(RSSH)是生物界重要的活性硫物种,可在内源性产生,保护关键的半胱氨酸残基不被不可逆氧化,并且是不同酶过程中的重要中间体。虽然过硫化物的亲核性强于其硫醇对应物,但在特定环境中,过硫化物也能以质子化的中性形式发挥亲电作用。此外,过硫化物在两个硫原子上都具有亲电性,与硫醇的反应可以导致 H2S 释放并形成二硫化物,或者导致反式硫化。尽管这些反应途径已被广泛接受,但控制过硫化物是通过 H2S 释放途径还是通过转硫化途径发生反应的具体特性仍然难以捉摸。在此,我们采用计算与实验相结合的方法,直接研究过硫化物与硫醇之间的反应性,以回答这些问题。利用密度泛函理论(DFT)计算,我们证明了增加过硫化物附近的立体体积或电子抽离可以通过转硫化途径分流过硫化物的反应性。在这些见解的基础上,我们使用合成的过硫化物供体和 N-碘乙酰基 l-酪氨酸甲酯(TME-IAM)捕获剂,通过实验监测和测量了从笨重的青霉胺基过硫化物到半胱氨酸基硫醇的转硫化反应,据我们所知,这是首次直接观察到低分子量物种之间的转硫化反应。总之,这些综合方法凸显了过硫化物的特性如何受到局部环境的直接影响,这对了解这些活性物种复杂的化学生物学特性具有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transpersulfidation or H2S Release? Understanding the Landscape of Persulfide Chemical Biology

Persulfides (RSSH) are biologically important reactive sulfur species that are endogenously produced, protect key cysteine residues from irreversible oxidation, and are important intermediates during different enzymatic processes. Although persulfides are stronger nucleophiles than their thiol counterparts, persulfides can also act as electrophiles in their neutral, protonated form in specific environments. Moreover, persulfides are electrophilic at both sulfur atoms, and the reaction with a thiolate can lead to either H2S release with disulfide formation or alternatively result in transpersulfidation. Despite the broad acceptance of these reaction pathways, the specific properties that control whether persulfides react through the H2S-releasing or transpersulfidation pathway remain elusive. Herein, we use a combined computational and experimental approach to directly investigate the reactivity between persulfides and thiols to answer these questions. Using density functional theory (DFT) calculations, we demonstrate that increasing steric bulk or electron withdrawal near the persulfide can shunt persulfide reactivity through the transpersulfidation pathway. Building from these insights, we use a synthetic persulfide donor and an N-iodoacetyl l-tyrosine methyl ester (TME-IAM) trapping agent to experimentally monitor and measure transpersulfidation from a bulky penicillamine-based persulfide to a cysteine-based thiol, which, to the best of our knowledge, is the first direct observation of transpersulfidation between low-molecular-weight species. Taken together, these combined approaches highlight how the properties of persulfides are directly impacted by local environments, which has significant impacts in understanding the complex chemical biology of these reactive species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Hierarchical Assembly of High-Nuclearity Copper(I) Alkynide Nanoclusters: Highly Effective CO2 Electroreduction Catalyst toward Hydrocarbons. Solvation-Enhanced Salt Bridges. α,ω-Alkanedibromides Form Low Conductance Chemisorbed Junctions with Silver Electrodes. Insight into the Rate-Determining Step in Photocatalytic Z-Scheme Overall Water Splitting by Employing A Series of Perovskite RTaON2 (R = Pr, Nd, Sm, and Gd) as Model Photocatalysts Enhanced Benzene Adsorption in Chloro-Functionalized Metal–Organic Frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1