从精确的质量差异得出高分子量未知化合物的配方,并根据第一原理排出最佳候选化合物。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-07-01 DOI:10.1021/acs.analchem.4c00621
Stilianos G. Roussis*, 
{"title":"从精确的质量差异得出高分子量未知化合物的配方,并根据第一原理排出最佳候选化合物。","authors":"Stilianos G. Roussis*,&nbsp;","doi":"10.1021/acs.analchem.4c00621","DOIUrl":null,"url":null,"abstract":"<p >The number of possible candidate formulas for high molecular weight unknown compounds (e.g., 7000–8000 Da for common 20-mer oligonucleotides) by high-resolution mass spectrometry is in the order of several hundred thousand even at the highest level of experimental accuracy. In demanding analytical applications involving new chemistries and synthetic routes where little is known about the chemical nature or mechanisms of formation of the unknown compounds (e.g., impurities), the generation of a short list of the most plausible formulas would be highly desirable. Such an approach has been developed in the current work. The concept of mass difference from a reference compound is introduced to simplify the approach and greatly reduce the number of possible formulas. The approach allows for the generation of candidate formulas by both the addition and subtraction of atoms to account for all possible molecular changes from the parent compound. A reduction of 3 orders of magnitude in the number of possible formulas has been achieved by the approach. Ranking of the formulas by the product of the sums of the absolute changes in the total number of all atoms and all heteroatoms in the proposed difference formula successfully ranked the correct formula within the top 10 from a list of 200–250 best candidate formulas. There is a tendency for the impurities to be formed involving the least change in the number of atoms and heteroatoms. Δ<sub>f</sub><i>H</i><sup>o</sup> <i>and</i> Δ<sub>f</sub><i>G′</i><sup>o</sup> values can be used as a complementary ranking system of the top candidates. The approach is applicable to unknowns in any other systems of high MW compounds.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulas of High MW Unknown Compounds from Accurate Mass Differences and Ranking of Best Candidates from First Principles\",\"authors\":\"Stilianos G. Roussis*,&nbsp;\",\"doi\":\"10.1021/acs.analchem.4c00621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The number of possible candidate formulas for high molecular weight unknown compounds (e.g., 7000–8000 Da for common 20-mer oligonucleotides) by high-resolution mass spectrometry is in the order of several hundred thousand even at the highest level of experimental accuracy. In demanding analytical applications involving new chemistries and synthetic routes where little is known about the chemical nature or mechanisms of formation of the unknown compounds (e.g., impurities), the generation of a short list of the most plausible formulas would be highly desirable. Such an approach has been developed in the current work. The concept of mass difference from a reference compound is introduced to simplify the approach and greatly reduce the number of possible formulas. The approach allows for the generation of candidate formulas by both the addition and subtraction of atoms to account for all possible molecular changes from the parent compound. A reduction of 3 orders of magnitude in the number of possible formulas has been achieved by the approach. Ranking of the formulas by the product of the sums of the absolute changes in the total number of all atoms and all heteroatoms in the proposed difference formula successfully ranked the correct formula within the top 10 from a list of 200–250 best candidate formulas. There is a tendency for the impurities to be formed involving the least change in the number of atoms and heteroatoms. Δ<sub>f</sub><i>H</i><sup>o</sup> <i>and</i> Δ<sub>f</sub><i>G′</i><sup>o</sup> values can be used as a complementary ranking system of the top candidates. The approach is applicable to unknowns in any other systems of high MW compounds.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.4c00621\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c00621","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过高分辨质谱法分析高分子量未知化合物(例如常见的 20 聚体寡核苷酸的分子量为 7000-8000 Da),即使在最高实验精度水平下,可能的候选配方数量也在几十万个左右。在涉及新化学成分和合成路线的高要求分析应用中,由于对未知化合物(如杂质)的化学性质或形成机制知之甚少,因此非常有必要生成一份最合理配方的简短清单。目前的工作就是开发这样一种方法。我们引入了与参考化合物质量差的概念,以简化方法并大大减少可能配方的数量。这种方法允许通过添加和减少原子来生成候选化学式,以考虑到与母体化合物相比可能发生的所有分子变化。该方法将可能的配方数量减少了 3 个数量级。根据拟议差异公式中所有原子和所有杂原子总数绝对变化之和的乘积对公式进行排序,成功地从 200-250 个最佳候选公式中将正确公式排在了前 10 名之内。形成杂质的原子和杂原子数变化最小的趋势。ΔfHo 和 ΔfG'o 值可用作候选最佳配方的补充排序系统。该方法适用于任何其他高分子量化合物体系中的未知物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formulas of High MW Unknown Compounds from Accurate Mass Differences and Ranking of Best Candidates from First Principles

The number of possible candidate formulas for high molecular weight unknown compounds (e.g., 7000–8000 Da for common 20-mer oligonucleotides) by high-resolution mass spectrometry is in the order of several hundred thousand even at the highest level of experimental accuracy. In demanding analytical applications involving new chemistries and synthetic routes where little is known about the chemical nature or mechanisms of formation of the unknown compounds (e.g., impurities), the generation of a short list of the most plausible formulas would be highly desirable. Such an approach has been developed in the current work. The concept of mass difference from a reference compound is introduced to simplify the approach and greatly reduce the number of possible formulas. The approach allows for the generation of candidate formulas by both the addition and subtraction of atoms to account for all possible molecular changes from the parent compound. A reduction of 3 orders of magnitude in the number of possible formulas has been achieved by the approach. Ranking of the formulas by the product of the sums of the absolute changes in the total number of all atoms and all heteroatoms in the proposed difference formula successfully ranked the correct formula within the top 10 from a list of 200–250 best candidate formulas. There is a tendency for the impurities to be formed involving the least change in the number of atoms and heteroatoms. ΔfHo and ΔfG′o values can be used as a complementary ranking system of the top candidates. The approach is applicable to unknowns in any other systems of high MW compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Exonuclease III/Cas12a Cascade Amplification Strategy and Smartphone-Based Portable Fluorescence Detector to Repurpose the Commercial AFP Strip for the POCT of Multiple RNAs. High-Throughput Metabolomics using 96-plex Isotope Tagging. Microchip Liquid-Phase Ion Trap for Online Mass Spectrometry Analysis. Mini-Program Enabled IoT Intelligent Molecular Diagnostic Device for Co-Detection and Spatiotemporal Mapping of Infectious Disease Pathogens. Rock-to-Pharma: Characterization of Shale Oil-Based Nonbiological Complex Drugs along the Production Process by High-Resolution Mass Spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1