通过铁双原子催化剂将八电子 N2O 直接电还原为 NH3。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-07-01 DOI:10.1021/acs.nanolett.4c00576
Donghai Wu, Kai Chen, Peng Lv, Ziyu Ma, Ke Chu* and Dongwei Ma*, 
{"title":"通过铁双原子催化剂将八电子 N2O 直接电还原为 NH3。","authors":"Donghai Wu,&nbsp;Kai Chen,&nbsp;Peng Lv,&nbsp;Ziyu Ma,&nbsp;Ke Chu* and Dongwei Ma*,&nbsp;","doi":"10.1021/acs.nanolett.4c00576","DOIUrl":null,"url":null,"abstract":"<p >N<sub>2</sub>O is a dominant atmosphere pollutant, causing ozone depletion and global warming. Currently, electrochemical reduction of N<sub>2</sub>O has gained increasing attention to remove N<sub>2</sub>O, but its product is worthless N<sub>2</sub>. Here, we propose a direct eight-electron (8<i>e</i>) pathway to electrochemically convert N<sub>2</sub>O into NH<sub>3</sub>. As a proof of concept, using density functional theory calculation, an Fe<sub>2</sub> double-atom catalyst (DAC) anchored by N-doped porous graphene (Fe<sub>2</sub>@NG) was screened out to be the most active and selective catalyst for N<sub>2</sub>O electroreduction toward NH<sub>3</sub> via the novel 8<i>e</i> pathway, which benefits from the unique bent N<sub>2</sub>O adsorption configuration. Guided by theoretical prediction, Fe<sub>2</sub>@NG DAC was fabricated experimentally, and it can achieve a high N<sub>2</sub>O-to-NH<sub>3</sub> Faradaic efficiency of 77.8% with a large NH<sub>3</sub> yield rate of 2.9 mg h<sup>–1</sup> cm<sup>–2</sup> at −0.6 V vs RHE in a neutral electrolyte. Our study offers a feasible strategy to synthesize NH<sub>3</sub> from pollutant N<sub>2</sub>O with simultaneous N<sub>2</sub>O removal.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Eight-Electron N2O Electroreduction to NH3 Enabled by an Fe Double-Atom Catalyst\",\"authors\":\"Donghai Wu,&nbsp;Kai Chen,&nbsp;Peng Lv,&nbsp;Ziyu Ma,&nbsp;Ke Chu* and Dongwei Ma*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c00576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >N<sub>2</sub>O is a dominant atmosphere pollutant, causing ozone depletion and global warming. Currently, electrochemical reduction of N<sub>2</sub>O has gained increasing attention to remove N<sub>2</sub>O, but its product is worthless N<sub>2</sub>. Here, we propose a direct eight-electron (8<i>e</i>) pathway to electrochemically convert N<sub>2</sub>O into NH<sub>3</sub>. As a proof of concept, using density functional theory calculation, an Fe<sub>2</sub> double-atom catalyst (DAC) anchored by N-doped porous graphene (Fe<sub>2</sub>@NG) was screened out to be the most active and selective catalyst for N<sub>2</sub>O electroreduction toward NH<sub>3</sub> via the novel 8<i>e</i> pathway, which benefits from the unique bent N<sub>2</sub>O adsorption configuration. Guided by theoretical prediction, Fe<sub>2</sub>@NG DAC was fabricated experimentally, and it can achieve a high N<sub>2</sub>O-to-NH<sub>3</sub> Faradaic efficiency of 77.8% with a large NH<sub>3</sub> yield rate of 2.9 mg h<sup>–1</sup> cm<sup>–2</sup> at −0.6 V vs RHE in a neutral electrolyte. Our study offers a feasible strategy to synthesize NH<sub>3</sub> from pollutant N<sub>2</sub>O with simultaneous N<sub>2</sub>O removal.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c00576\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c00576","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一氧化二氮是一种主要的大气污染物,会造成臭氧层破坏和全球变暖。目前,电化学还原 N2O 以去除 N2O 的方法越来越受到关注,但其产物是无价值的 N2。在此,我们提出了一种直接将 N2O 电化学转化为 NH3 的八电子(8e)途径。作为概念验证,我们利用密度泛函理论计算,筛选出一种由掺杂 N 的多孔石墨烯(Fe2@NG)锚定的 Fe2 双原子催化剂(DAC),它是通过新型 8e 途径将 N2O 电还原为 NH3 的最活跃、选择性最高的催化剂,这种催化剂得益于独特的 N2O 弯曲吸附构型。在理论预测的指导下,实验制备了 Fe2@NG DAC,在中性电解质中,当电压为 -0.6 V vs RHE 时,它的 N2O 转化为 NH3 法拉第效率高达 77.8%,NH3 产率高达 2.9 mg h-1 cm-2。我们的研究为从污染物 N2O 中合成 NH3 并同时去除 N2O 提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Direct Eight-Electron N2O Electroreduction to NH3 Enabled by an Fe Double-Atom Catalyst

N2O is a dominant atmosphere pollutant, causing ozone depletion and global warming. Currently, electrochemical reduction of N2O has gained increasing attention to remove N2O, but its product is worthless N2. Here, we propose a direct eight-electron (8e) pathway to electrochemically convert N2O into NH3. As a proof of concept, using density functional theory calculation, an Fe2 double-atom catalyst (DAC) anchored by N-doped porous graphene (Fe2@NG) was screened out to be the most active and selective catalyst for N2O electroreduction toward NH3 via the novel 8e pathway, which benefits from the unique bent N2O adsorption configuration. Guided by theoretical prediction, Fe2@NG DAC was fabricated experimentally, and it can achieve a high N2O-to-NH3 Faradaic efficiency of 77.8% with a large NH3 yield rate of 2.9 mg h–1 cm–2 at −0.6 V vs RHE in a neutral electrolyte. Our study offers a feasible strategy to synthesize NH3 from pollutant N2O with simultaneous N2O removal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Graphene Bilayer as a Template for Manufacturing Novel Encapsulated 2D Materials. Octahedral vs Tiara-like Pd6(SR)12 Clusters. Scalable Multistep Imprinting of Multiplexed Optical Anti-counterfeiting Patterns with Hierarchical Structures. Transcutaneous Immunization of 1D Rod-Like Tobacco-Mosaic-Virus-Based Peptide Vaccine via Tip-Loaded Dissolving Microneedles. Vanadate-Mediated Mismatch Configuration over the Reconstructed Nickel-Iron Electrocatalyst for Boosting Alkaline Oxygen Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1