医院心电监护:好的、不太好的和尚未开发的潜力。

IF 2.7 3区 医学 Q2 CRITICAL CARE MEDICINE American Journal of Critical Care Pub Date : 2024-07-01 DOI:10.4037/ajcc2024781
Michele M Pelter
{"title":"医院心电监护:好的、不太好的和尚未开发的潜力。","authors":"Michele M Pelter","doi":"10.4037/ajcc2024781","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous electrocardiographic (ECG) monitoring was first introduced into hospitals in the 1960s, initially into critical care, as bedside monitors, and eventually into step-down units with telemetry capabilities. Although the initial use was rather simplistic (ie, heart rate and rhythm assessment), the capabilities of these devices and associated physiologic (vital sign) monitors have expanded considerably. Current bedside monitors now include sophisticated ECG software designed to identify myocardial ischemia (ie, ST-segment monitoring), QT-interval prolongation, and a myriad of other cardiac arrhythmia types. Physiologic monitoring has had similar advances from noninvasive assessment of core vital signs (blood pressure, respiratory rate, oxygen saturation) to invasive monitoring including arterial blood pressure, temperature, central venous pressure, intracranial pressure, carbon dioxide, and many others. The benefit of these monitoring devices is that continuous and real-time information is displayed and can be configured to alarm to alert nurses to a change in a patient's condition. I think it is fair to say that critical and high-acuity care nurses see these devices as having a positive impact in patient care. However, this enthusiasm has been somewhat dampened in the past decade by research highlighting the shortcomings and unanticipated consequences of these devices, namely alarm and alert fatigue. In this article, which is associated with the American Association of Critical-Care Nurses' Distinguished Research Lecture, I describe my 36-year journey from a clinical nurse to nurse scientist and the trajectory of my program of research focused primarily on ECG and physiologic monitoring. Specifically, I discuss the good, the not so good, and the untapped potential of these monitoring systems in clinical care. I also describe my experiences with community-based research in patients with acute coronary syndrome and/or heart failure.</p>","PeriodicalId":7607,"journal":{"name":"American Journal of Critical Care","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hospital-Based Electrocardiographic Monitoring: The Good, the Not So Good, and Untapped Potential.\",\"authors\":\"Michele M Pelter\",\"doi\":\"10.4037/ajcc2024781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Continuous electrocardiographic (ECG) monitoring was first introduced into hospitals in the 1960s, initially into critical care, as bedside monitors, and eventually into step-down units with telemetry capabilities. Although the initial use was rather simplistic (ie, heart rate and rhythm assessment), the capabilities of these devices and associated physiologic (vital sign) monitors have expanded considerably. Current bedside monitors now include sophisticated ECG software designed to identify myocardial ischemia (ie, ST-segment monitoring), QT-interval prolongation, and a myriad of other cardiac arrhythmia types. Physiologic monitoring has had similar advances from noninvasive assessment of core vital signs (blood pressure, respiratory rate, oxygen saturation) to invasive monitoring including arterial blood pressure, temperature, central venous pressure, intracranial pressure, carbon dioxide, and many others. The benefit of these monitoring devices is that continuous and real-time information is displayed and can be configured to alarm to alert nurses to a change in a patient's condition. I think it is fair to say that critical and high-acuity care nurses see these devices as having a positive impact in patient care. However, this enthusiasm has been somewhat dampened in the past decade by research highlighting the shortcomings and unanticipated consequences of these devices, namely alarm and alert fatigue. In this article, which is associated with the American Association of Critical-Care Nurses' Distinguished Research Lecture, I describe my 36-year journey from a clinical nurse to nurse scientist and the trajectory of my program of research focused primarily on ECG and physiologic monitoring. Specifically, I discuss the good, the not so good, and the untapped potential of these monitoring systems in clinical care. I also describe my experiences with community-based research in patients with acute coronary syndrome and/or heart failure.</p>\",\"PeriodicalId\":7607,\"journal\":{\"name\":\"American Journal of Critical Care\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Critical Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4037/ajcc2024781\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Critical Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4037/ajcc2024781","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

连续心电图(ECG)监测于 20 世纪 60 年代首次引入医院,最初作为床旁监护仪应用于重症监护,最终应用于具有遥测功能的降压病房。虽然最初的用途相当简单(即心率和心律评估),但这些设备和相关生理(生命体征)监护仪的功能已大大扩展。目前的床旁监护仪已包括复杂的心电图软件,可用于识别心肌缺血(即 ST 段监测)、QT 间期延长以及其他各种心律失常类型。生理监测也取得了类似的进展,从对核心生命体征(血压、呼吸频率、血氧饱和度)的无创评估到包括动脉血压、体温、中心静脉压、颅内压、二氧化碳等在内的有创监测。这些监测设备的好处是可以显示连续、实时的信息,并可配置警报功能,提醒护士注意病人病情的变化。可以说,重症和高危护理护士认为这些设备对病人护理有积极影响。然而,在过去的十年中,由于一些研究强调了这些设备的缺点和意想不到的后果,即警报和警报疲劳,这种热情在一定程度上受到了抑制。在这篇与美国重症监护护士协会杰出研究讲座相关的文章中,我描述了自己从临床护士到护士科学家的 36 年历程,以及我主要专注于心电图和生理监测的研究计划的轨迹。具体来说,我讨论了这些监测系统在临床护理中的优点、缺点和尚未开发的潜力。我还介绍了我对急性冠状动脉综合症和/或心力衰竭患者进行社区研究的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hospital-Based Electrocardiographic Monitoring: The Good, the Not So Good, and Untapped Potential.

Continuous electrocardiographic (ECG) monitoring was first introduced into hospitals in the 1960s, initially into critical care, as bedside monitors, and eventually into step-down units with telemetry capabilities. Although the initial use was rather simplistic (ie, heart rate and rhythm assessment), the capabilities of these devices and associated physiologic (vital sign) monitors have expanded considerably. Current bedside monitors now include sophisticated ECG software designed to identify myocardial ischemia (ie, ST-segment monitoring), QT-interval prolongation, and a myriad of other cardiac arrhythmia types. Physiologic monitoring has had similar advances from noninvasive assessment of core vital signs (blood pressure, respiratory rate, oxygen saturation) to invasive monitoring including arterial blood pressure, temperature, central venous pressure, intracranial pressure, carbon dioxide, and many others. The benefit of these monitoring devices is that continuous and real-time information is displayed and can be configured to alarm to alert nurses to a change in a patient's condition. I think it is fair to say that critical and high-acuity care nurses see these devices as having a positive impact in patient care. However, this enthusiasm has been somewhat dampened in the past decade by research highlighting the shortcomings and unanticipated consequences of these devices, namely alarm and alert fatigue. In this article, which is associated with the American Association of Critical-Care Nurses' Distinguished Research Lecture, I describe my 36-year journey from a clinical nurse to nurse scientist and the trajectory of my program of research focused primarily on ECG and physiologic monitoring. Specifically, I discuss the good, the not so good, and the untapped potential of these monitoring systems in clinical care. I also describe my experiences with community-based research in patients with acute coronary syndrome and/or heart failure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
3.70%
发文量
103
审稿时长
6-12 weeks
期刊介绍: The editors of the American Journal of Critical Care (AJCC) invite authors to submit original manuscripts describing investigations, advances, or observations from all specialties related to the care of critically and acutely ill patients. Papers promoting collaborative practice and research are encouraged. Manuscripts will be considered on the understanding that they have not been published elsewhere and have been submitted solely to AJCC.
期刊最新文献
Bioelectrical Impedance Analysis to Assess Energy Expenditure in Critically Ill Patients: A Cross-Sectional Study. Clinical Pearls. Courage to Soar in Clinical Research. Discussion Guide for the Krupp Article. E Is for Early Mobility and Improved Patient Outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1