{"title":"编码富半胱氨酸受体样激酶的 CRK14 基因与拟南芥全球增殖停滞的调控有关。","authors":"Sho Imai, Hikaru Hirozawa, Shingo Sugahara, Chisato Ishizaki, Mayu Higuchi, Yuma Matsushita, Takamasa Suzuki, Nobuyoshi Mochizuki, Akira Nagatani, Chiharu Ueguchi","doi":"10.1111/gtc.13139","DOIUrl":null,"url":null,"abstract":"<p>Global proliferative arrest (GPA) is a phenomenon in monocarpic plants in which the activity of all aboveground meristems generally ceases in a nearly coordinated manner after the formation of a certain number of fruits. Despite the fact that GPA is a biologically and agriculturally important event, the underlying molecular mechanisms are not well understood. In this study, we attempted to elucidate the molecular mechanism of GPA regulation by identifying the gene responsible for the Arabidopsis mutant <i>fireworks</i> (<i>fiw</i>), causing an early GPA phenotype. Map-based cloning revealed that the <i>fiw</i> gene encodes CYSTEIN-RICH RECEPTOR-LIKE KINASE 14 (CRK14). Genetic analysis suggested that <i>fiw</i> is a missense, gain-of-function allele of <i>CRK14</i>. Since overexpression of the extracellular domain of CRK14 resulted in delayed GPA in the wild-type background, we concluded that <i>CRK14</i> is involved in GPA regulation. Analysis of double mutants revealed that <i>fiw</i> acts downstream of or independently of the <i>FRUITFULL-APETALA2</i> (<i>AP2</i>)<i>/AP2-like</i> pathway, which was previously reported as an age-dependent default pathway in GPA regulation. In addition, <i>fiw</i> is epistatic to <i>clv</i> with respect to GPA control. Furthermore, we found a negative effect on <i>WUSCHEL</i> expression in the <i>fiw</i> mutants. These results thus suggest the existence of a novel CRK14-dependent signaling pathway involved in GPA regulation.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"29 9","pages":"735-745"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13139","citationCount":"0","resultStr":"{\"title\":\"The CRK14 gene encoding a cysteine-rich receptor-like kinase is implicated in the regulation of global proliferative arrest in Arabidopsis thaliana\",\"authors\":\"Sho Imai, Hikaru Hirozawa, Shingo Sugahara, Chisato Ishizaki, Mayu Higuchi, Yuma Matsushita, Takamasa Suzuki, Nobuyoshi Mochizuki, Akira Nagatani, Chiharu Ueguchi\",\"doi\":\"10.1111/gtc.13139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global proliferative arrest (GPA) is a phenomenon in monocarpic plants in which the activity of all aboveground meristems generally ceases in a nearly coordinated manner after the formation of a certain number of fruits. Despite the fact that GPA is a biologically and agriculturally important event, the underlying molecular mechanisms are not well understood. In this study, we attempted to elucidate the molecular mechanism of GPA regulation by identifying the gene responsible for the Arabidopsis mutant <i>fireworks</i> (<i>fiw</i>), causing an early GPA phenotype. Map-based cloning revealed that the <i>fiw</i> gene encodes CYSTEIN-RICH RECEPTOR-LIKE KINASE 14 (CRK14). Genetic analysis suggested that <i>fiw</i> is a missense, gain-of-function allele of <i>CRK14</i>. Since overexpression of the extracellular domain of CRK14 resulted in delayed GPA in the wild-type background, we concluded that <i>CRK14</i> is involved in GPA regulation. Analysis of double mutants revealed that <i>fiw</i> acts downstream of or independently of the <i>FRUITFULL-APETALA2</i> (<i>AP2</i>)<i>/AP2-like</i> pathway, which was previously reported as an age-dependent default pathway in GPA regulation. In addition, <i>fiw</i> is epistatic to <i>clv</i> with respect to GPA control. Furthermore, we found a negative effect on <i>WUSCHEL</i> expression in the <i>fiw</i> mutants. These results thus suggest the existence of a novel CRK14-dependent signaling pathway involved in GPA regulation.</p>\",\"PeriodicalId\":12742,\"journal\":{\"name\":\"Genes to Cells\",\"volume\":\"29 9\",\"pages\":\"735-745\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13139\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes to Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13139\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes to Cells","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13139","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The CRK14 gene encoding a cysteine-rich receptor-like kinase is implicated in the regulation of global proliferative arrest in Arabidopsis thaliana
Global proliferative arrest (GPA) is a phenomenon in monocarpic plants in which the activity of all aboveground meristems generally ceases in a nearly coordinated manner after the formation of a certain number of fruits. Despite the fact that GPA is a biologically and agriculturally important event, the underlying molecular mechanisms are not well understood. In this study, we attempted to elucidate the molecular mechanism of GPA regulation by identifying the gene responsible for the Arabidopsis mutant fireworks (fiw), causing an early GPA phenotype. Map-based cloning revealed that the fiw gene encodes CYSTEIN-RICH RECEPTOR-LIKE KINASE 14 (CRK14). Genetic analysis suggested that fiw is a missense, gain-of-function allele of CRK14. Since overexpression of the extracellular domain of CRK14 resulted in delayed GPA in the wild-type background, we concluded that CRK14 is involved in GPA regulation. Analysis of double mutants revealed that fiw acts downstream of or independently of the FRUITFULL-APETALA2 (AP2)/AP2-like pathway, which was previously reported as an age-dependent default pathway in GPA regulation. In addition, fiw is epistatic to clv with respect to GPA control. Furthermore, we found a negative effect on WUSCHEL expression in the fiw mutants. These results thus suggest the existence of a novel CRK14-dependent signaling pathway involved in GPA regulation.
期刊介绍:
Genes to Cells provides an international forum for the publication of papers describing important aspects of molecular and cellular biology. The journal aims to present papers that provide conceptual advance in the relevant field. Particular emphasis will be placed on work aimed at understanding the basic mechanisms underlying biological events.