{"title":"深度自我重构驱动的联合非负矩阵因式分解模型,用于识别复杂疾病的多基因组成像关联。","authors":"Jin Deng , Kai Wei , Jiana Fang , Ying Li","doi":"10.1016/j.jbi.2024.104684","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Comprehensive analysis of histopathology images and transcriptomics data enables the identification of candidate biomarkers and multimodal association patterns. Most existing multimodal data association studies are derived from extensions of the joint nonnegative matrix factorization model for identifying complex data associations, which can make full use of clinical prior information. However, the raw data were usually taken as the input without considering the underlying complex multi-subspace structure, influencing the subsequent integration analysis results.</p></div><div><h3>Methods</h3><p>This study proposed a deep-self reconstructed joint nonnegative matrix factorization (DSRJNMF) model to use self-expressive properties to reconstruct the raw data to characterize the similarity structure associated with clinical labels. Then, the sparsity, orthogonality, and regularization constraints constructed from prior information are added to the DSRJNMF model to determine the sparse set of biologically relevant features across modalities.</p></div><div><h3>Results</h3><p>The algorithm has been applied to identify the imaging genetic association of triple negative breast cancer (TNBC). Multilevel experimental results demonstrate that the proposed algorithm better estimates potential associations between pathological image features and miRNA-gene and identifies consistent multimodal imaging genetic biomarkers to guide the interpretation of TNBC.</p></div><div><h3>Conclusion</h3><p>The propose method provides a novel idea of data association analysis oriented to complex diseases.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"156 ","pages":"Article 104684"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep self-reconstruction driven joint nonnegative matrix factorization model for identifying multiple genomic imaging associations in complex diseases\",\"authors\":\"Jin Deng , Kai Wei , Jiana Fang , Ying Li\",\"doi\":\"10.1016/j.jbi.2024.104684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Comprehensive analysis of histopathology images and transcriptomics data enables the identification of candidate biomarkers and multimodal association patterns. Most existing multimodal data association studies are derived from extensions of the joint nonnegative matrix factorization model for identifying complex data associations, which can make full use of clinical prior information. However, the raw data were usually taken as the input without considering the underlying complex multi-subspace structure, influencing the subsequent integration analysis results.</p></div><div><h3>Methods</h3><p>This study proposed a deep-self reconstructed joint nonnegative matrix factorization (DSRJNMF) model to use self-expressive properties to reconstruct the raw data to characterize the similarity structure associated with clinical labels. Then, the sparsity, orthogonality, and regularization constraints constructed from prior information are added to the DSRJNMF model to determine the sparse set of biologically relevant features across modalities.</p></div><div><h3>Results</h3><p>The algorithm has been applied to identify the imaging genetic association of triple negative breast cancer (TNBC). Multilevel experimental results demonstrate that the proposed algorithm better estimates potential associations between pathological image features and miRNA-gene and identifies consistent multimodal imaging genetic biomarkers to guide the interpretation of TNBC.</p></div><div><h3>Conclusion</h3><p>The propose method provides a novel idea of data association analysis oriented to complex diseases.</p></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"156 \",\"pages\":\"Article 104684\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046424001023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424001023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Deep self-reconstruction driven joint nonnegative matrix factorization model for identifying multiple genomic imaging associations in complex diseases
Objective
Comprehensive analysis of histopathology images and transcriptomics data enables the identification of candidate biomarkers and multimodal association patterns. Most existing multimodal data association studies are derived from extensions of the joint nonnegative matrix factorization model for identifying complex data associations, which can make full use of clinical prior information. However, the raw data were usually taken as the input without considering the underlying complex multi-subspace structure, influencing the subsequent integration analysis results.
Methods
This study proposed a deep-self reconstructed joint nonnegative matrix factorization (DSRJNMF) model to use self-expressive properties to reconstruct the raw data to characterize the similarity structure associated with clinical labels. Then, the sparsity, orthogonality, and regularization constraints constructed from prior information are added to the DSRJNMF model to determine the sparse set of biologically relevant features across modalities.
Results
The algorithm has been applied to identify the imaging genetic association of triple negative breast cancer (TNBC). Multilevel experimental results demonstrate that the proposed algorithm better estimates potential associations between pathological image features and miRNA-gene and identifies consistent multimodal imaging genetic biomarkers to guide the interpretation of TNBC.
Conclusion
The propose method provides a novel idea of data association analysis oriented to complex diseases.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.