Yuling Jing, Yanling Ding, Hengsong Fu, Tao Li, Ting Long, Qiang Ye
{"title":"Empagliflozin 通过抑制神经生长因子/酪氨酸激酶受体 A 通路抑制交感神经重塑,从而改善室性心律失常。","authors":"Yuling Jing, Yanling Ding, Hengsong Fu, Tao Li, Ting Long, Qiang Ye","doi":"10.2459/JCM.0000000000001630","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Sodium-glucose cotransporter 2 inhibitors (SGLT2is) can ameliorate arrhythmias; however, the mechanisms underlying their antiarrhythmic effect remain unclear. Therefore, we aimed to test the hypothesis that the SGLT2i empagliflozin (EMPA) ameliorates ventricular arrhythmias caused by myocardial infarction (MI) by inhibiting sympathetic remodeling.</p><p><strong>Methods: </strong>Male nondiabetic Sprague-Dawley rats were divided into Sham ( n = 10), MI ( n = 13), low-EMPA (10 mg/kg/day; n = 13), and high-EMPA (30 mg/kg/day; n = 13) groups. Except for the Sham group, MI models were established by ligation of the left anterior descending coronary artery. After 4 weeks, the hearts were removed. Echocardiography, electrical stimulation, hematoxylin-eosin staining and Masson's staining, Western blotting, immunohistochemistry (IHC), and ELISA were performed.</p><p><strong>Results: </strong>Except for left ventricular posterior wall thickness (LVPWT), EMPA treatment significantly ameliorated the left ventricular anterior wall thickness (LVAWT), interventricular septum thickness (IVST), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), and left ventricular ejection fraction (LVEF) in MI rats; there was no statistical difference between the low-EMPA and high-EMPA groups. The threshold for ventricular fibrillation induction and myocardial fibrosis was significantly ameliorated in EMPA-treated rats, and there was no statistical difference between the high-EMPA and low-EMPA groups. EMPA decreased the expression of nerve growth factor (NGF), tyrosine kinase receptor A (TrkA), tyrosine hydroxylase, and growth-associated protein 43 (GAP43) in the left ventricular infarction margin myocardium of MI rats, especially in the high-EMPA group, with a statistically significant difference between the high-EMPA and low-EMPA groups. High-EMPA significantly decreased noradrenaline (NE) levels in the blood of MI rats; however, there was no statistical difference between the low-EMPA and MI groups.</p><p><strong>Conclusion: </strong>EMPA ameliorated the occurrence of ventricular arrhythmias in MI rats, which may be related to a reduction in sympathetic activity, inhibition of the NGF/TrkA pathway, inhibition of sympathetic remodeling, and improvement in cardiac function and cardiac structural remodeling.</p>","PeriodicalId":15228,"journal":{"name":"Journal of Cardiovascular Medicine","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296263/pdf/","citationCount":"0","resultStr":"{\"title\":\"Empagliflozin ameliorates ventricular arrhythmias by inhibiting sympathetic remodeling via nerve growth factor/tyrosine kinase receptor A pathway inhibition.\",\"authors\":\"Yuling Jing, Yanling Ding, Hengsong Fu, Tao Li, Ting Long, Qiang Ye\",\"doi\":\"10.2459/JCM.0000000000001630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Sodium-glucose cotransporter 2 inhibitors (SGLT2is) can ameliorate arrhythmias; however, the mechanisms underlying their antiarrhythmic effect remain unclear. Therefore, we aimed to test the hypothesis that the SGLT2i empagliflozin (EMPA) ameliorates ventricular arrhythmias caused by myocardial infarction (MI) by inhibiting sympathetic remodeling.</p><p><strong>Methods: </strong>Male nondiabetic Sprague-Dawley rats were divided into Sham ( n = 10), MI ( n = 13), low-EMPA (10 mg/kg/day; n = 13), and high-EMPA (30 mg/kg/day; n = 13) groups. Except for the Sham group, MI models were established by ligation of the left anterior descending coronary artery. After 4 weeks, the hearts were removed. Echocardiography, electrical stimulation, hematoxylin-eosin staining and Masson's staining, Western blotting, immunohistochemistry (IHC), and ELISA were performed.</p><p><strong>Results: </strong>Except for left ventricular posterior wall thickness (LVPWT), EMPA treatment significantly ameliorated the left ventricular anterior wall thickness (LVAWT), interventricular septum thickness (IVST), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), and left ventricular ejection fraction (LVEF) in MI rats; there was no statistical difference between the low-EMPA and high-EMPA groups. The threshold for ventricular fibrillation induction and myocardial fibrosis was significantly ameliorated in EMPA-treated rats, and there was no statistical difference between the high-EMPA and low-EMPA groups. EMPA decreased the expression of nerve growth factor (NGF), tyrosine kinase receptor A (TrkA), tyrosine hydroxylase, and growth-associated protein 43 (GAP43) in the left ventricular infarction margin myocardium of MI rats, especially in the high-EMPA group, with a statistically significant difference between the high-EMPA and low-EMPA groups. High-EMPA significantly decreased noradrenaline (NE) levels in the blood of MI rats; however, there was no statistical difference between the low-EMPA and MI groups.</p><p><strong>Conclusion: </strong>EMPA ameliorated the occurrence of ventricular arrhythmias in MI rats, which may be related to a reduction in sympathetic activity, inhibition of the NGF/TrkA pathway, inhibition of sympathetic remodeling, and improvement in cardiac function and cardiac structural remodeling.</p>\",\"PeriodicalId\":15228,\"journal\":{\"name\":\"Journal of Cardiovascular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296263/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2459/JCM.0000000000001630\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2459/JCM.0000000000001630","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Empagliflozin ameliorates ventricular arrhythmias by inhibiting sympathetic remodeling via nerve growth factor/tyrosine kinase receptor A pathway inhibition.
Background and aims: Sodium-glucose cotransporter 2 inhibitors (SGLT2is) can ameliorate arrhythmias; however, the mechanisms underlying their antiarrhythmic effect remain unclear. Therefore, we aimed to test the hypothesis that the SGLT2i empagliflozin (EMPA) ameliorates ventricular arrhythmias caused by myocardial infarction (MI) by inhibiting sympathetic remodeling.
Methods: Male nondiabetic Sprague-Dawley rats were divided into Sham ( n = 10), MI ( n = 13), low-EMPA (10 mg/kg/day; n = 13), and high-EMPA (30 mg/kg/day; n = 13) groups. Except for the Sham group, MI models were established by ligation of the left anterior descending coronary artery. After 4 weeks, the hearts were removed. Echocardiography, electrical stimulation, hematoxylin-eosin staining and Masson's staining, Western blotting, immunohistochemistry (IHC), and ELISA were performed.
Results: Except for left ventricular posterior wall thickness (LVPWT), EMPA treatment significantly ameliorated the left ventricular anterior wall thickness (LVAWT), interventricular septum thickness (IVST), left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), and left ventricular ejection fraction (LVEF) in MI rats; there was no statistical difference between the low-EMPA and high-EMPA groups. The threshold for ventricular fibrillation induction and myocardial fibrosis was significantly ameliorated in EMPA-treated rats, and there was no statistical difference between the high-EMPA and low-EMPA groups. EMPA decreased the expression of nerve growth factor (NGF), tyrosine kinase receptor A (TrkA), tyrosine hydroxylase, and growth-associated protein 43 (GAP43) in the left ventricular infarction margin myocardium of MI rats, especially in the high-EMPA group, with a statistically significant difference between the high-EMPA and low-EMPA groups. High-EMPA significantly decreased noradrenaline (NE) levels in the blood of MI rats; however, there was no statistical difference between the low-EMPA and MI groups.
Conclusion: EMPA ameliorated the occurrence of ventricular arrhythmias in MI rats, which may be related to a reduction in sympathetic activity, inhibition of the NGF/TrkA pathway, inhibition of sympathetic remodeling, and improvement in cardiac function and cardiac structural remodeling.
期刊介绍:
Journal of Cardiovascular Medicine is a monthly publication of the Italian Federation of Cardiology. It publishes original research articles, epidemiological studies, new methodological clinical approaches, case reports, design and goals of clinical trials, review articles, points of view, editorials and Images in cardiovascular medicine.
Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.