采用改性拉普兰的恩曲他滨聚合脂质体--减少相关肝毒性的尝试。

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Liposome Research Pub Date : 2024-07-01 DOI:10.1080/08982104.2024.2362352
Sayani Bhattacharyya, Lahari R, Ranganath Mk
{"title":"采用改性拉普兰的恩曲他滨聚合脂质体--减少相关肝毒性的尝试。","authors":"Sayani Bhattacharyya, Lahari R, Ranganath Mk","doi":"10.1080/08982104.2024.2362352","DOIUrl":null,"url":null,"abstract":"<p><p>Emtricitabine (FTC) a BCS class I drug, is used for HIV prevention. The high solubility of the drug is the leading cause of severe hepatotoxicity and lactic acidosis. This research focuses on the use of modified pullulan for the preparation of polymeric liposomes of FTC. Modified pullulan was synthesized using cholesterol, and succinic anhydride in a controlled chemical environment. The formation of the polymer was established through analysis of spectra. Varying the drug-polymer ratio (1:1, 1:2, and 1:3), the drug-polymer composite was loaded in the vesicular system of soya phosphatidylcholine and cholesterol. Formulations were evaluated for drug entrapment, particle size, surface morphology, and <i>in vitro</i> and <i>ex vivo</i> drug release. An <i>in vivo</i> study of the pure drug and the best formulation on mice was conducted for 28 days following daily oral administration to evaluate the effect on liver and hematological parameters. The best formulation was further subjected to cytotoxicity study on hepatic cell lines. Spectral analysis confirmed the formation of modified pullulan. All formulations showed high drug entrapment in the nanovesicles. <i>The in</i> <i>vitro</i> and <i>ex vivo</i> drug release profiles depicted a controlled release of the drug. Hematological parameters were found to be under control in the animals throughout the experimentation. A comparative histopathology study on the livers and cytotoxicity study on hepatic cell lines revealed the safety of the best formulation over the pure drug. Hence it can be concluded that polymeric liposomes of FTC can be a promising mode of delivery to overcome its limitations.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymeric liposomes of emtricitabine employing modified pullulan-an attempt to reduce associated hepatotoxicity.\",\"authors\":\"Sayani Bhattacharyya, Lahari R, Ranganath Mk\",\"doi\":\"10.1080/08982104.2024.2362352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Emtricitabine (FTC) a BCS class I drug, is used for HIV prevention. The high solubility of the drug is the leading cause of severe hepatotoxicity and lactic acidosis. This research focuses on the use of modified pullulan for the preparation of polymeric liposomes of FTC. Modified pullulan was synthesized using cholesterol, and succinic anhydride in a controlled chemical environment. The formation of the polymer was established through analysis of spectra. Varying the drug-polymer ratio (1:1, 1:2, and 1:3), the drug-polymer composite was loaded in the vesicular system of soya phosphatidylcholine and cholesterol. Formulations were evaluated for drug entrapment, particle size, surface morphology, and <i>in vitro</i> and <i>ex vivo</i> drug release. An <i>in vivo</i> study of the pure drug and the best formulation on mice was conducted for 28 days following daily oral administration to evaluate the effect on liver and hematological parameters. The best formulation was further subjected to cytotoxicity study on hepatic cell lines. Spectral analysis confirmed the formation of modified pullulan. All formulations showed high drug entrapment in the nanovesicles. <i>The in</i> <i>vitro</i> and <i>ex vivo</i> drug release profiles depicted a controlled release of the drug. Hematological parameters were found to be under control in the animals throughout the experimentation. A comparative histopathology study on the livers and cytotoxicity study on hepatic cell lines revealed the safety of the best formulation over the pure drug. Hence it can be concluded that polymeric liposomes of FTC can be a promising mode of delivery to overcome its limitations.</p>\",\"PeriodicalId\":16286,\"journal\":{\"name\":\"Journal of Liposome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liposome Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08982104.2024.2362352\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2024.2362352","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

恩曲他滨(FTC)是 BCS 一级药物,用于预防艾滋病毒。该药物的高溶解度是导致严重肝毒性和乳酸酸中毒的主要原因。本研究的重点是使用改性拉普兰制备 FTC 的聚合物脂质体。使用胆固醇和琥珀酸酐在受控化学环境中合成了改性拉普兰。通过光谱分析确定了聚合物的形成。通过改变药物与聚合物的比例(1:1、1:2 和 1:3),将药物与聚合物的复合物装入大豆磷脂胆碱和胆固醇的囊泡系统中。对制剂的药物夹带、粒度、表面形态、体外和体内药物释放进行了评估。对纯药物和最佳配方进行了为期 28 天的小鼠体内研究,以评估其对肝脏和血液学参数的影响。最佳配方还对肝细胞系进行了细胞毒性研究。光谱分析证实了改性拉普兰的形成。所有制剂在纳米颗粒中都显示出较高的药物包被率。体外和体内药物释放曲线显示出药物的可控释放。在整个实验过程中,动物的血液学参数都得到了控制。对肝脏进行的组织病理学比较研究和对肝细胞系进行的细胞毒性研究表明,最佳配方比纯药物更安全。因此,可以得出结论,四氯化碳的聚合物脂质体是一种很有前景的给药模式,可以克服其局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polymeric liposomes of emtricitabine employing modified pullulan-an attempt to reduce associated hepatotoxicity.

Emtricitabine (FTC) a BCS class I drug, is used for HIV prevention. The high solubility of the drug is the leading cause of severe hepatotoxicity and lactic acidosis. This research focuses on the use of modified pullulan for the preparation of polymeric liposomes of FTC. Modified pullulan was synthesized using cholesterol, and succinic anhydride in a controlled chemical environment. The formation of the polymer was established through analysis of spectra. Varying the drug-polymer ratio (1:1, 1:2, and 1:3), the drug-polymer composite was loaded in the vesicular system of soya phosphatidylcholine and cholesterol. Formulations were evaluated for drug entrapment, particle size, surface morphology, and in vitro and ex vivo drug release. An in vivo study of the pure drug and the best formulation on mice was conducted for 28 days following daily oral administration to evaluate the effect on liver and hematological parameters. The best formulation was further subjected to cytotoxicity study on hepatic cell lines. Spectral analysis confirmed the formation of modified pullulan. All formulations showed high drug entrapment in the nanovesicles. The in vitro and ex vivo drug release profiles depicted a controlled release of the drug. Hematological parameters were found to be under control in the animals throughout the experimentation. A comparative histopathology study on the livers and cytotoxicity study on hepatic cell lines revealed the safety of the best formulation over the pure drug. Hence it can be concluded that polymeric liposomes of FTC can be a promising mode of delivery to overcome its limitations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
期刊最新文献
Preparation and characterization of niosomes for the delivery of a lipophilic model drug: comparative stability study with liposomes against phospholipase-A2. Comparison of free vs. liposomal naringenin in white adipose tissue browning in C57BL/6j mice A comparative study of sensitizers and liposome composition in radiation-induced controlled drug release for cancer therapy. Design and preparation of pH-sensitive cytotoxic liposomal formulations containing antitumor colchicine analogues for target release. Impact of micelle characteristics on cholesterol absorption and ezetimibe inhibition: Insights from Niemann-Pick C1-like 1 binding and molecular structure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1