{"title":"新型 m6A writer 甲基转移酶 5 是一种很有希望的预后生物标志物,并与口腔鳞状细胞癌的免疫细胞浸润有关。","authors":"Priyadharshini Muthumanickam, Abilasha Ramasubramanian, Chandra Pandi, Balachander Kannan, Anitha Pandi, Pratibha Ramani, Vijayashree Priyadharsini Jayaseelan, Paramasivam Arumugam","doi":"10.1111/jop.13568","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Emerging research has identified the N6-methyladenosine (m6A) modification and its regulatory enzymes, including methyltransferase 5 (METTL5), as critical players in cancer biology. However, the role of METTL5 in oral squamous cell carcinoma (OSCC) remains poorly understood.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>We conducted a comprehensive study to investigate the expression and implications of METTL5 in OSCC. We recruited 76 OSCC patients to analyze METTL5 mRNA and protein expression using RT-qPCR and western blot. Additionally, we analyzed METTL5 expression and its correlation with clinical features, patient prognosis, immune cell infiltration, and biological pathways using the TCGA-HNSCC dataset, which primarily consists of OSCC samples.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Our findings revealed significant overexpression of METTL5 in OSCC tissues compared to normal tissues. The high expression of METTL5 is associated with advanced cancer stages, higher tumor grades, nodal metastasis, and poorer patient outcomes, indicating its involvement in cancer progression. In silico functional analysis revealed that METTL5 plays a role in multiple biological pathways, highlighting its importance in cancer biology. Moreover, METTL5 has complex relationships with immune regulatory genes, suggesting its potential role in shaping the tumor immune microenvironment.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>METTL5 is a promising candidate for the prognosis and therapeutic intervention of OSCC. Its overexpression in cancer tissues, association with clinical features, and intricate links to immune regulatory networks underscore its significance in this malignancy. This study contributes to a deeper understanding of the complex factors influencing OSCC, and provides a foundation for future research and potential clinical applications.</p>\n </section>\n </div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The novel m6A writer methyltransferase 5 is a promising prognostic biomarker and associated with immune cell infiltration in oral squamous cell carcinoma\",\"authors\":\"Priyadharshini Muthumanickam, Abilasha Ramasubramanian, Chandra Pandi, Balachander Kannan, Anitha Pandi, Pratibha Ramani, Vijayashree Priyadharsini Jayaseelan, Paramasivam Arumugam\",\"doi\":\"10.1111/jop.13568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Emerging research has identified the N6-methyladenosine (m6A) modification and its regulatory enzymes, including methyltransferase 5 (METTL5), as critical players in cancer biology. However, the role of METTL5 in oral squamous cell carcinoma (OSCC) remains poorly understood.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Materials and Methods</h3>\\n \\n <p>We conducted a comprehensive study to investigate the expression and implications of METTL5 in OSCC. We recruited 76 OSCC patients to analyze METTL5 mRNA and protein expression using RT-qPCR and western blot. Additionally, we analyzed METTL5 expression and its correlation with clinical features, patient prognosis, immune cell infiltration, and biological pathways using the TCGA-HNSCC dataset, which primarily consists of OSCC samples.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Our findings revealed significant overexpression of METTL5 in OSCC tissues compared to normal tissues. The high expression of METTL5 is associated with advanced cancer stages, higher tumor grades, nodal metastasis, and poorer patient outcomes, indicating its involvement in cancer progression. In silico functional analysis revealed that METTL5 plays a role in multiple biological pathways, highlighting its importance in cancer biology. Moreover, METTL5 has complex relationships with immune regulatory genes, suggesting its potential role in shaping the tumor immune microenvironment.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>METTL5 is a promising candidate for the prognosis and therapeutic intervention of OSCC. Its overexpression in cancer tissues, association with clinical features, and intricate links to immune regulatory networks underscore its significance in this malignancy. This study contributes to a deeper understanding of the complex factors influencing OSCC, and provides a foundation for future research and potential clinical applications.</p>\\n </section>\\n </div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jop.13568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jop.13568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The novel m6A writer methyltransferase 5 is a promising prognostic biomarker and associated with immune cell infiltration in oral squamous cell carcinoma
Background
Emerging research has identified the N6-methyladenosine (m6A) modification and its regulatory enzymes, including methyltransferase 5 (METTL5), as critical players in cancer biology. However, the role of METTL5 in oral squamous cell carcinoma (OSCC) remains poorly understood.
Materials and Methods
We conducted a comprehensive study to investigate the expression and implications of METTL5 in OSCC. We recruited 76 OSCC patients to analyze METTL5 mRNA and protein expression using RT-qPCR and western blot. Additionally, we analyzed METTL5 expression and its correlation with clinical features, patient prognosis, immune cell infiltration, and biological pathways using the TCGA-HNSCC dataset, which primarily consists of OSCC samples.
Results
Our findings revealed significant overexpression of METTL5 in OSCC tissues compared to normal tissues. The high expression of METTL5 is associated with advanced cancer stages, higher tumor grades, nodal metastasis, and poorer patient outcomes, indicating its involvement in cancer progression. In silico functional analysis revealed that METTL5 plays a role in multiple biological pathways, highlighting its importance in cancer biology. Moreover, METTL5 has complex relationships with immune regulatory genes, suggesting its potential role in shaping the tumor immune microenvironment.
Conclusion
METTL5 is a promising candidate for the prognosis and therapeutic intervention of OSCC. Its overexpression in cancer tissues, association with clinical features, and intricate links to immune regulatory networks underscore its significance in this malignancy. This study contributes to a deeper understanding of the complex factors influencing OSCC, and provides a foundation for future research and potential clinical applications.