河口和垃圾填埋场微生物群的微塑料生物降解。

IF 3.3 3区 生物学 Q2 ECOLOGY Microbial Ecology Pub Date : 2024-06-28 DOI:10.1007/s00248-024-02399-8
Cristina S Pires, Luís Costa, Sónia G Barbosa, João Carlos Sequeira, Diogo Cachetas, José P Freitas, Gilberto Martins, Ana Vera Machado, Ana J Cavaleiro, Andreia F Salvador
{"title":"河口和垃圾填埋场微生物群的微塑料生物降解。","authors":"Cristina S Pires, Luís Costa, Sónia G Barbosa, João Carlos Sequeira, Diogo Cachetas, José P Freitas, Gilberto Martins, Ana Vera Machado, Ana J Cavaleiro, Andreia F Salvador","doi":"10.1007/s00248-024-02399-8","DOIUrl":null,"url":null,"abstract":"<p><p>Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H<sub>2</sub>-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"88"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213754/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microplastics Biodegradation by Estuarine and Landfill Microbiomes.\",\"authors\":\"Cristina S Pires, Luís Costa, Sónia G Barbosa, João Carlos Sequeira, Diogo Cachetas, José P Freitas, Gilberto Martins, Ana Vera Machado, Ana J Cavaleiro, Andreia F Salvador\",\"doi\":\"10.1007/s00248-024-02399-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H<sub>2</sub>-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.</p>\",\"PeriodicalId\":18708,\"journal\":{\"name\":\"Microbial Ecology\",\"volume\":\"87 1\",\"pages\":\"88\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213754/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00248-024-02399-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02399-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

塑料污染是一个全球性的环境挑战,影响着野生动物和人类健康。评估天然微生物群在微塑料污染环境中的生物降解能力对于减轻塑料污染的影响至关重要。在这项工作中,我们评估了垃圾填埋场渗滤液(LL)和河口沉积物(ES)在好氧、厌氧、嗜热和中嗜热条件下生物降解聚乙烯(PE)、聚对苯二甲酸乙二醇酯(PET)和聚己内酯(PCL)的潜力。PCL 在 50-60 天内发生广泛的有氧生物降解,LL(99 ± 7%)和 ES(78 ± 3%)。在厌氧条件下,LL 在 60 天内降解了 87 ± 19% 的 PCL,而 ES 的生物降解量极小(3 ± 0.3%)。PE 和 PET 没有明显降解。Metataxonomics 结果(16S rRNA 测序)显示存在大量嗜热微生物,归类为 Coprothermobacter sp.(在厌氧和有氧培养中的相对丰度分别为 6.8% 和 28%)。Coprothermobacter spp.含有两种酶的编码基因,一种是酯酶,另一种是恒温单酰甘油脂肪酶,这两种酶有可能催化 PCL 的水解。这些结果表明,Coprothermobacter sp.可能是垃圾填埋场渗滤液微生物群中不同条件下进行嗜热型 PCL 生物降解的关键微生物。在厌氧微生物群落中,主要是属于甲烷热杆菌(Methanothermobacter sp.,21%)的亲氢型甲烷菌,这表明在 PCL 生物降解过程中,甲烷热杆菌可能会与铜热杆菌(一种 H2 生产者)发生综合作用。在有氧实验中,真菌在真核微生物群落中占主导地位(如 Exophiala(41%)、Penicillium(17%)和 Mucor(18%)),这表明 LL 的有氧 PCL 生物降解涉及真菌和细菌之间的合作。我们的研究结果揭示了介导塑料生物降解的微生物群落和微生物相互作用,为减轻塑料污染提供了宝贵的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microplastics Biodegradation by Estuarine and Landfill Microbiomes.

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Ecology
Microbial Ecology 生物-海洋与淡水生物学
CiteScore
6.90
自引率
2.80%
发文量
212
审稿时长
3-8 weeks
期刊介绍: The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.
期刊最新文献
Influences of Community Coalescence on the Assembly of Bacterial Communities of the Small-Scale Complex Aquatic System from the Perspective of Bacterial Transmission, Core Taxa, and Co-occurrence Patterns. Wild-Type Domestication: Loss of Intrinsic Metabolic Traits Concealed by Culture in Rich Media. Fungus Fighters: Wood Ants (Formica polyctena) and Their Associated Microbes Inhibit Plant Pathogenic Fungi. Biological Nitrification Inhibitors with Antagonistic and Synergistic Effects on Growth of Ammonia Oxidisers and Soil Nitrification. Seasonal and Spatial Dynamics of Fungal Leaf Endophytes in Eucalyptus crebra (Narrow-Leaved Ironbark).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1