Yewei Zhong, Fenglian Tong, Junlin Yan, Huiwen Tan, Adalaiti Abudurexiti, Rui Zhang, Yi Lei, Delong Li, Xiaoli Ma
{"title":"基于植物代谢组学方法,对桑树叶片、果实和枝条中黄酮类成分的差异进行了区分。","authors":"Yewei Zhong, Fenglian Tong, Junlin Yan, Huiwen Tan, Adalaiti Abudurexiti, Rui Zhang, Yi Lei, Delong Li, Xiaoli Ma","doi":"10.1515/biol-2022-0886","DOIUrl":null,"url":null,"abstract":"<p><p>Mulberry is a common crop rich in flavonoids, and its leaves (ML), fruits (M), and branches (Ramulus Mori, RM) have medicinal value. In the present study, a total of 118 flavonoid metabolites (47 flavone, 23 flavonol, 16 flavonoid, 8 anthocyanins, 8 isoflavone, 14 flavanone, and 2 proanthocyanidins) and 12 polyphenols were identified by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. The most abundant in ML were 8-<i>C</i>-hexosyl-hesperetin <i>O</i>-hexoside and astragalin, the most abundant in M were 8-<i>C</i>-hexosyl-hesperetin <i>O</i>-hexoside and naringenin, and the most abundant in RM were cyanidin 3-<i>O</i>-galactoside and gallocatechin-gallocatechin. The total flavonoid compositions of ML and RM were essentially the same, but the contents of flavonoid metabolite in more than half of them were higher than those in M. Compared with ML, the contents of flavone and flavonoid in RM and M were generally down-regulated. Each tissue part had a unique flavonoid, which could be used as a marker to distinguish different tissue parts. In this study, the differences between flavonoid metabolite among RM, ML, and M were studied, which provided a theoretical basis for making full use of mulberry resources.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"19 1","pages":"20220886"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211874/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differences in the flavonoid composition of the leaves, fruits, and branches of mulberry are distinguished based on a plant metabolomics approach.\",\"authors\":\"Yewei Zhong, Fenglian Tong, Junlin Yan, Huiwen Tan, Adalaiti Abudurexiti, Rui Zhang, Yi Lei, Delong Li, Xiaoli Ma\",\"doi\":\"10.1515/biol-2022-0886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mulberry is a common crop rich in flavonoids, and its leaves (ML), fruits (M), and branches (Ramulus Mori, RM) have medicinal value. In the present study, a total of 118 flavonoid metabolites (47 flavone, 23 flavonol, 16 flavonoid, 8 anthocyanins, 8 isoflavone, 14 flavanone, and 2 proanthocyanidins) and 12 polyphenols were identified by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. The most abundant in ML were 8-<i>C</i>-hexosyl-hesperetin <i>O</i>-hexoside and astragalin, the most abundant in M were 8-<i>C</i>-hexosyl-hesperetin <i>O</i>-hexoside and naringenin, and the most abundant in RM were cyanidin 3-<i>O</i>-galactoside and gallocatechin-gallocatechin. The total flavonoid compositions of ML and RM were essentially the same, but the contents of flavonoid metabolite in more than half of them were higher than those in M. Compared with ML, the contents of flavone and flavonoid in RM and M were generally down-regulated. Each tissue part had a unique flavonoid, which could be used as a marker to distinguish different tissue parts. In this study, the differences between flavonoid metabolite among RM, ML, and M were studied, which provided a theoretical basis for making full use of mulberry resources.</p>\",\"PeriodicalId\":19605,\"journal\":{\"name\":\"Open Life Sciences\",\"volume\":\"19 1\",\"pages\":\"20220886\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211874/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/biol-2022-0886\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-0886","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Differences in the flavonoid composition of the leaves, fruits, and branches of mulberry are distinguished based on a plant metabolomics approach.
Mulberry is a common crop rich in flavonoids, and its leaves (ML), fruits (M), and branches (Ramulus Mori, RM) have medicinal value. In the present study, a total of 118 flavonoid metabolites (47 flavone, 23 flavonol, 16 flavonoid, 8 anthocyanins, 8 isoflavone, 14 flavanone, and 2 proanthocyanidins) and 12 polyphenols were identified by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. The most abundant in ML were 8-C-hexosyl-hesperetin O-hexoside and astragalin, the most abundant in M were 8-C-hexosyl-hesperetin O-hexoside and naringenin, and the most abundant in RM were cyanidin 3-O-galactoside and gallocatechin-gallocatechin. The total flavonoid compositions of ML and RM were essentially the same, but the contents of flavonoid metabolite in more than half of them were higher than those in M. Compared with ML, the contents of flavone and flavonoid in RM and M were generally down-regulated. Each tissue part had a unique flavonoid, which could be used as a marker to distinguish different tissue parts. In this study, the differences between flavonoid metabolite among RM, ML, and M were studied, which provided a theoretical basis for making full use of mulberry resources.
期刊介绍:
Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.