辅助素相关化合物对根寄生植物胚根生长的调节作用

IF 3.9 2区 生物学 Q2 CELL BIOLOGY Plant and Cell Physiology Pub Date : 2024-10-03 DOI:10.1093/pcp/pcae071
Kei Tsuzuki, Taiki Suzuki, Michio Kuruma, Kotaro Nishiyama, Ken-Ichiro Hayashi, Shinya Hagihara, Yoshiya Seto
{"title":"辅助素相关化合物对根寄生植物胚根生长的调节作用","authors":"Kei Tsuzuki, Taiki Suzuki, Michio Kuruma, Kotaro Nishiyama, Ken-Ichiro Hayashi, Shinya Hagihara, Yoshiya Seto","doi":"10.1093/pcp/pcae071","DOIUrl":null,"url":null,"abstract":"<p><p>Root parasitic plants in the Orobanchaceae, such as Striga and Orobanche, cause significant damage to crop production. The germination step of these root parasitic plants is induced by host-root-derived strigolactones. After germination, the radicles elongate toward the host and invade the host root. We have previously discovered that a simple amino acid, tryptophan (Trp), as well as its metabolite, the plant hormone indole-3-acetic acid (IAA), can inhibit radicle elongation of Orobanche minor. These results suggest that auxin plays a crucial role in the radicle elongation step in root parasitic plants. In this report, we used various auxin chemical probes to dissect the auxin function in the radicle growth of O. minor and Striga hermonthica. We found that synthetic auxins inhibited radicle elongation. In addition, auxin receptor antagonist, auxinole, rescued the inhibition of radicle growth by exogenous IAA. Moreover, a polar transport inhibitor of auxin, N-1-naphthylphthalamic acid, affected radicle bending. We also proved that exogenously applied Trp is converted into IAA in O. minor seeds, and auxinole partly rescued this radicle elongation. Taken together, our data demonstrate a pivotal role for auxin in radicle growth. Thus, manipulation of auxin function in root parasitic plants should offer a useful approach to combat these parasites.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radicle Growth Regulation of Root Parasitic Plants by Auxin-related Compounds.\",\"authors\":\"Kei Tsuzuki, Taiki Suzuki, Michio Kuruma, Kotaro Nishiyama, Ken-Ichiro Hayashi, Shinya Hagihara, Yoshiya Seto\",\"doi\":\"10.1093/pcp/pcae071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Root parasitic plants in the Orobanchaceae, such as Striga and Orobanche, cause significant damage to crop production. The germination step of these root parasitic plants is induced by host-root-derived strigolactones. After germination, the radicles elongate toward the host and invade the host root. We have previously discovered that a simple amino acid, tryptophan (Trp), as well as its metabolite, the plant hormone indole-3-acetic acid (IAA), can inhibit radicle elongation of Orobanche minor. These results suggest that auxin plays a crucial role in the radicle elongation step in root parasitic plants. In this report, we used various auxin chemical probes to dissect the auxin function in the radicle growth of O. minor and Striga hermonthica. We found that synthetic auxins inhibited radicle elongation. In addition, auxin receptor antagonist, auxinole, rescued the inhibition of radicle growth by exogenous IAA. Moreover, a polar transport inhibitor of auxin, N-1-naphthylphthalamic acid, affected radicle bending. We also proved that exogenously applied Trp is converted into IAA in O. minor seeds, and auxinole partly rescued this radicle elongation. Taken together, our data demonstrate a pivotal role for auxin in radicle growth. Thus, manipulation of auxin function in root parasitic plants should offer a useful approach to combat these parasites.</p>\",\"PeriodicalId\":20575,\"journal\":{\"name\":\"Plant and Cell Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Cell Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/pcp/pcae071\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcae071","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

石蒜科(Orobancheceae)的根寄生植物,如石蒜(Striga)和石蒜(Orobanche),对作物生产造成了严重破坏。这些根部寄生植物的萌芽步骤是由宿主根部衍生的糙果内酯(SLs)诱导的。发芽后,根茎向宿主方向伸长并侵入宿主根部。我们以前曾发现,一种简单的氨基酸色氨酸(Trp)及其代谢产物--植物激素吲哚-3-乙酸(IAA)能抑制小尾寒羊胚根的伸长。这些结果表明,辅助素在根寄生植物的胚根伸长步骤中起着至关重要的作用。在本报告中,我们使用了多种辅助素化学探针来剖析辅助素在小尾寒羊和Striga hermonthica的胚根生长中的功能。我们发现合成的辅助素抑制了胚根的伸长。此外,辅助素受体拮抗剂 auxinole 可以缓解外源 IAA 对胚根生长的抑制。此外,辅助素的极性运输抑制剂 N-1-萘酞胺酸(NPA)也影响了胚根的弯曲。我们还证明,外源施加的 Trp 可在小鳞茎种子中转化为 IAA,而辅助素可部分缓解这种胚根伸长现象。我们的数据证明了辅助素在胚根生长中的关键作用。因此,操纵根寄生植物中的辅助素功能应该是对抗这些寄生虫的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radicle Growth Regulation of Root Parasitic Plants by Auxin-related Compounds.

Root parasitic plants in the Orobanchaceae, such as Striga and Orobanche, cause significant damage to crop production. The germination step of these root parasitic plants is induced by host-root-derived strigolactones. After germination, the radicles elongate toward the host and invade the host root. We have previously discovered that a simple amino acid, tryptophan (Trp), as well as its metabolite, the plant hormone indole-3-acetic acid (IAA), can inhibit radicle elongation of Orobanche minor. These results suggest that auxin plays a crucial role in the radicle elongation step in root parasitic plants. In this report, we used various auxin chemical probes to dissect the auxin function in the radicle growth of O. minor and Striga hermonthica. We found that synthetic auxins inhibited radicle elongation. In addition, auxin receptor antagonist, auxinole, rescued the inhibition of radicle growth by exogenous IAA. Moreover, a polar transport inhibitor of auxin, N-1-naphthylphthalamic acid, affected radicle bending. We also proved that exogenously applied Trp is converted into IAA in O. minor seeds, and auxinole partly rescued this radicle elongation. Taken together, our data demonstrate a pivotal role for auxin in radicle growth. Thus, manipulation of auxin function in root parasitic plants should offer a useful approach to combat these parasites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant and Cell Physiology
Plant and Cell Physiology 生物-细胞生物学
CiteScore
8.40
自引率
4.10%
发文量
166
审稿时长
1.7 months
期刊介绍: Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels. Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.
期刊最新文献
Convergent emergence of Glucomannan β-galactosyltransferase activity in Asterids and Rosids. De-etiolation is Almost Colour Blind: the Study of Photosynthesis Awakening Under Blue and Red Light. Gene targeting in Arabidopsis through one-armed homology-directed repair. The Armor of Orchid Petals: Insights into Cuticle Deposition Regulation. Ancient Origin of Acetyltransferases Catalyzing O-acetylation of Plant Cell Wall Polysaccharides.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1