{"title":"亚洲和非洲水稻物种间的四倍体种间杂交种依靠杂交不育的杀手保护基因座恢复生育能力。","authors":"Daichi Kuniyoshi, Megumi Ishihara, Koichi Yamamori, Yohei Koide, Yuji Kishima","doi":"10.1093/genetics/iyae104","DOIUrl":null,"url":null,"abstract":"<p><p>Interspecific F1 hybrids between Asian (Oryza sativa) and African rice (Oryza glaberrima) exhibit severe sterility caused by the accumulation of hybrid sterility genes/loci at 15 or more loci. The mechanisms underlying the hybrid sterility genes are largely unknown; however, a few genes associated with the killer-protector system, which is the system most frequently associated with hybrid sterility genes, have been identified. We previously produced fertile plants as tetraploids derived from diploid interspecific F1 hybrids through anther culture; therefore, it was suggested that hybrid sterility could be overcome following tetraploidization. We investigated whether tetraploid interspecific plants produced by crossing are fertile and tested the involvement of hybrid sterility genes in the process. Fertile tetraploid interspecific F1 hybrid plants were obtained by crossing 2 tetraploids of O. sativa and O. glaberrima. To elucidate the relationships between pollen fertility and the hybrid sterility loci in the tetraploid F1 microspores, we performed genetic analyses of the tetraploid F2 hybrids and diploid plants obtained from the microspores of tetraploid interspecific hybrids by anther culture. The result suggested that the tetraploid interspecific hybrids overcame pollen and seed infertility based on the proportion of loci with the killer-protector system present in the tetraploids. The heterozygous hybrid sterility loci with the killer-protector system in the tetraploid segregate the homozygous killed allele (16.7-21.4%), with more than three-quarters of the gametes surviving. We theoretically and experimentally demonstrated that fertile rice progenies can be grown from tetraploid interspecific hybrids.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tetraploid interspecific hybrids between Asian and African rice species restore fertility depending on killer-protector loci for hybrid sterility.\",\"authors\":\"Daichi Kuniyoshi, Megumi Ishihara, Koichi Yamamori, Yohei Koide, Yuji Kishima\",\"doi\":\"10.1093/genetics/iyae104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interspecific F1 hybrids between Asian (Oryza sativa) and African rice (Oryza glaberrima) exhibit severe sterility caused by the accumulation of hybrid sterility genes/loci at 15 or more loci. The mechanisms underlying the hybrid sterility genes are largely unknown; however, a few genes associated with the killer-protector system, which is the system most frequently associated with hybrid sterility genes, have been identified. We previously produced fertile plants as tetraploids derived from diploid interspecific F1 hybrids through anther culture; therefore, it was suggested that hybrid sterility could be overcome following tetraploidization. We investigated whether tetraploid interspecific plants produced by crossing are fertile and tested the involvement of hybrid sterility genes in the process. Fertile tetraploid interspecific F1 hybrid plants were obtained by crossing 2 tetraploids of O. sativa and O. glaberrima. To elucidate the relationships between pollen fertility and the hybrid sterility loci in the tetraploid F1 microspores, we performed genetic analyses of the tetraploid F2 hybrids and diploid plants obtained from the microspores of tetraploid interspecific hybrids by anther culture. The result suggested that the tetraploid interspecific hybrids overcame pollen and seed infertility based on the proportion of loci with the killer-protector system present in the tetraploids. The heterozygous hybrid sterility loci with the killer-protector system in the tetraploid segregate the homozygous killed allele (16.7-21.4%), with more than three-quarters of the gametes surviving. We theoretically and experimentally demonstrated that fertile rice progenies can be grown from tetraploid interspecific hybrids.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae104\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae104","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
亚洲水稻(Oryza sativa)和非洲水稻(Oryza glaberrima)的种间 F1 代杂交种表现出严重的不育性,这是由于在 15 个或更多基因位点上积累了杂交不育基因/位点。杂交不育基因的内在机制大多尚不清楚;不过,已经发现了一些与杀手保护系统有关的基因,而杀手保护系统是最常与杂交不育基因有关的系统。我们以前曾通过花药培养从二倍体种间 F1 杂交种培育出可育的四倍体植株;因此,有人认为杂交不育可以通过四倍体化来克服。我们研究了杂交产生的四倍体种间植株是否可育,并测试了杂交不育基因在这一过程中的参与情况。通过将 Oryza sativa 和 Oryza glaberrima 的两个四倍体杂交,获得了可育的四倍体种间 F1 杂交植株。为了阐明花粉育性与四倍体 F1 小孢子中杂交不育位点之间的关系,我们对四倍体 F2 杂交种和由四倍体种间杂种小孢子经花药培养获得的二倍体植株进行了遗传分析。结果表明,四倍体种间杂种克服了花粉不育和种子不育,其依据是四倍体中具有杀手保护系统的基因座比例。四倍体中带有杀手保护系统的杂交不育位点分离出同源被杀等位基因(16.7-21.4%),配子存活率超过四分之三。我们从理论上和实验上证明,四倍体种间杂种可以培育出可育的水稻后代。
Tetraploid interspecific hybrids between Asian and African rice species restore fertility depending on killer-protector loci for hybrid sterility.
Interspecific F1 hybrids between Asian (Oryza sativa) and African rice (Oryza glaberrima) exhibit severe sterility caused by the accumulation of hybrid sterility genes/loci at 15 or more loci. The mechanisms underlying the hybrid sterility genes are largely unknown; however, a few genes associated with the killer-protector system, which is the system most frequently associated with hybrid sterility genes, have been identified. We previously produced fertile plants as tetraploids derived from diploid interspecific F1 hybrids through anther culture; therefore, it was suggested that hybrid sterility could be overcome following tetraploidization. We investigated whether tetraploid interspecific plants produced by crossing are fertile and tested the involvement of hybrid sterility genes in the process. Fertile tetraploid interspecific F1 hybrid plants were obtained by crossing 2 tetraploids of O. sativa and O. glaberrima. To elucidate the relationships between pollen fertility and the hybrid sterility loci in the tetraploid F1 microspores, we performed genetic analyses of the tetraploid F2 hybrids and diploid plants obtained from the microspores of tetraploid interspecific hybrids by anther culture. The result suggested that the tetraploid interspecific hybrids overcame pollen and seed infertility based on the proportion of loci with the killer-protector system present in the tetraploids. The heterozygous hybrid sterility loci with the killer-protector system in the tetraploid segregate the homozygous killed allele (16.7-21.4%), with more than three-quarters of the gametes surviving. We theoretically and experimentally demonstrated that fertile rice progenies can be grown from tetraploid interspecific hybrids.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.