{"title":"利用辅助信息解决 covid-19 病例计数数据中的选择偏差和测量误差。","authors":"Walter Dempsey","doi":"10.1214/23-aoas1744","DOIUrl":null,"url":null,"abstract":"<p><p>Coronavirus case-count data has influenced government policies and drives most epidemiological forecasts. Limited testing is cited as the key driver behind minimal information on the COVID-19 pandemic. While expanded testing is laudable, measurement error and selection bias are the two greatest problems limiting our understanding of the COVID-19 pandemic; neither can be fully addressed by increased testing capacity. In this paper, we demonstrate their impact on estimation of point prevalence and the effective reproduction number. We show that estimates based on the millions of molecular tests in the US has the same mean square error as a small simple random sample. To address this, a procedure is presented that combines case-count data and random samples over time to estimate selection propensities based on key covariate information. We then combine these selection propensities with epidemiological forecast models to construct a <i>doubly robust</i> estimation method that accounts for both measurement-error and selection bias. This method is then applied to estimate Indiana's active infection prevalence using case-count, hospitalization, and death data with demographic information, a statewide random molecular sample collected from April 25-29th, and Delphi's COVID-19 Trends and Impact Survey. We end with a series of recommendations based on the proposed methodology.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 4","pages":"2903-2923"},"PeriodicalIF":1.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210953/pdf/","citationCount":"0","resultStr":"{\"title\":\"ADDRESSING SELECTION BIAS AND MEASUREMENT ERROR IN COVID-19 CASE COUNT DATA USING AUXILIARY INFORMATION.\",\"authors\":\"Walter Dempsey\",\"doi\":\"10.1214/23-aoas1744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronavirus case-count data has influenced government policies and drives most epidemiological forecasts. Limited testing is cited as the key driver behind minimal information on the COVID-19 pandemic. While expanded testing is laudable, measurement error and selection bias are the two greatest problems limiting our understanding of the COVID-19 pandemic; neither can be fully addressed by increased testing capacity. In this paper, we demonstrate their impact on estimation of point prevalence and the effective reproduction number. We show that estimates based on the millions of molecular tests in the US has the same mean square error as a small simple random sample. To address this, a procedure is presented that combines case-count data and random samples over time to estimate selection propensities based on key covariate information. We then combine these selection propensities with epidemiological forecast models to construct a <i>doubly robust</i> estimation method that accounts for both measurement-error and selection bias. This method is then applied to estimate Indiana's active infection prevalence using case-count, hospitalization, and death data with demographic information, a statewide random molecular sample collected from April 25-29th, and Delphi's COVID-19 Trends and Impact Survey. We end with a series of recommendations based on the proposed methodology.</p>\",\"PeriodicalId\":50772,\"journal\":{\"name\":\"Annals of Applied Statistics\",\"volume\":\"17 4\",\"pages\":\"2903-2923\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210953/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aoas1744\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-aoas1744","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
ADDRESSING SELECTION BIAS AND MEASUREMENT ERROR IN COVID-19 CASE COUNT DATA USING AUXILIARY INFORMATION.
Coronavirus case-count data has influenced government policies and drives most epidemiological forecasts. Limited testing is cited as the key driver behind minimal information on the COVID-19 pandemic. While expanded testing is laudable, measurement error and selection bias are the two greatest problems limiting our understanding of the COVID-19 pandemic; neither can be fully addressed by increased testing capacity. In this paper, we demonstrate their impact on estimation of point prevalence and the effective reproduction number. We show that estimates based on the millions of molecular tests in the US has the same mean square error as a small simple random sample. To address this, a procedure is presented that combines case-count data and random samples over time to estimate selection propensities based on key covariate information. We then combine these selection propensities with epidemiological forecast models to construct a doubly robust estimation method that accounts for both measurement-error and selection bias. This method is then applied to estimate Indiana's active infection prevalence using case-count, hospitalization, and death data with demographic information, a statewide random molecular sample collected from April 25-29th, and Delphi's COVID-19 Trends and Impact Survey. We end with a series of recommendations based on the proposed methodology.
期刊介绍:
Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.