{"title":"CircPDSS1(hsa_circ_0017998)沉默通过调节miR-137/SLC7A11/GPX4/GCLC轴诱导非小细胞肺癌细胞的铁变态反应。","authors":"Ling Wu , Ni Li , Linwen Zhu , Guofeng Shao","doi":"10.1016/j.tiv.2024.105887","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Circular RNAs (circRNAs) regulate the tumorigenesis of non-small-cell lung cancer (NSCLC). CircPDSS1 (hsa_circ_0017998) has been newly discovered, and its role in NSCLC remains elusive. We aimed to investigate the functional roles and downstream targets of circPDSS1 in NSCLC cells.</p></div><div><h3>Materials and methods</h3><p>Cellular viabilities were measured through the Cell Counting Kit-8 (CCK-8) assay, whereas cell death was assessed through flow cytometry. The lactate dehydrogenase activity, malondialdehyde levels, ferrous iron, and reactive oxygen species were measured using commercial assay kits. The interaction between circPDSSA/ microRNA-137 (miR-137) and miR-137/solute carrier family 7 member 11 (SLC7A11) was assayed through a dual luciferase activity assay. Finally, the mRNA and protein levels were measured using real-time reverse transcriptase-polymerase chain reaction and western blots, respectively.</p></div><div><h3>Results</h3><p>CircPDSS1 expression was upregulated in NSCLC cells, compared with healthy lung cells. CircPDSS1 silencing suppressed the viability of NSCLC cells. Additionally, circPDSS1 knockdown induced ferroptosis rather than other types of cell death in NSCLC cells. Mechanically, circPDSS1 functions as a “sponge” to inversely control miR-137 expression, which directly targets SLC7A11. Moreover, circPDSS1 silencing causes the downregulation of glutathione peroxidase 4 (GPX4) and glutamate-cysteine ligase catalytic subunit (GCLC).</p></div><div><h3>Conclusions</h3><p>Targeting the circPDSS1/miR-137/SLC7A11/GPX4/GCLC axis may be a promising strategy to kill NSCLC cells.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"99 ","pages":"Article 105887"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CircPDSS1 (hsa_circ_0017998) silencing induces ferroptosis in non-small-cell lung cancer cells by modulating the miR-137/SLC7A11/GPX4/GCLC axis\",\"authors\":\"Ling Wu , Ni Li , Linwen Zhu , Guofeng Shao\",\"doi\":\"10.1016/j.tiv.2024.105887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Circular RNAs (circRNAs) regulate the tumorigenesis of non-small-cell lung cancer (NSCLC). CircPDSS1 (hsa_circ_0017998) has been newly discovered, and its role in NSCLC remains elusive. We aimed to investigate the functional roles and downstream targets of circPDSS1 in NSCLC cells.</p></div><div><h3>Materials and methods</h3><p>Cellular viabilities were measured through the Cell Counting Kit-8 (CCK-8) assay, whereas cell death was assessed through flow cytometry. The lactate dehydrogenase activity, malondialdehyde levels, ferrous iron, and reactive oxygen species were measured using commercial assay kits. The interaction between circPDSSA/ microRNA-137 (miR-137) and miR-137/solute carrier family 7 member 11 (SLC7A11) was assayed through a dual luciferase activity assay. Finally, the mRNA and protein levels were measured using real-time reverse transcriptase-polymerase chain reaction and western blots, respectively.</p></div><div><h3>Results</h3><p>CircPDSS1 expression was upregulated in NSCLC cells, compared with healthy lung cells. CircPDSS1 silencing suppressed the viability of NSCLC cells. Additionally, circPDSS1 knockdown induced ferroptosis rather than other types of cell death in NSCLC cells. Mechanically, circPDSS1 functions as a “sponge” to inversely control miR-137 expression, which directly targets SLC7A11. Moreover, circPDSS1 silencing causes the downregulation of glutathione peroxidase 4 (GPX4) and glutamate-cysteine ligase catalytic subunit (GCLC).</p></div><div><h3>Conclusions</h3><p>Targeting the circPDSS1/miR-137/SLC7A11/GPX4/GCLC axis may be a promising strategy to kill NSCLC cells.</p></div>\",\"PeriodicalId\":54423,\"journal\":{\"name\":\"Toxicology in Vitro\",\"volume\":\"99 \",\"pages\":\"Article 105887\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology in Vitro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0887233324001176\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324001176","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
CircPDSS1 (hsa_circ_0017998) silencing induces ferroptosis in non-small-cell lung cancer cells by modulating the miR-137/SLC7A11/GPX4/GCLC axis
Background
Circular RNAs (circRNAs) regulate the tumorigenesis of non-small-cell lung cancer (NSCLC). CircPDSS1 (hsa_circ_0017998) has been newly discovered, and its role in NSCLC remains elusive. We aimed to investigate the functional roles and downstream targets of circPDSS1 in NSCLC cells.
Materials and methods
Cellular viabilities were measured through the Cell Counting Kit-8 (CCK-8) assay, whereas cell death was assessed through flow cytometry. The lactate dehydrogenase activity, malondialdehyde levels, ferrous iron, and reactive oxygen species were measured using commercial assay kits. The interaction between circPDSSA/ microRNA-137 (miR-137) and miR-137/solute carrier family 7 member 11 (SLC7A11) was assayed through a dual luciferase activity assay. Finally, the mRNA and protein levels were measured using real-time reverse transcriptase-polymerase chain reaction and western blots, respectively.
Results
CircPDSS1 expression was upregulated in NSCLC cells, compared with healthy lung cells. CircPDSS1 silencing suppressed the viability of NSCLC cells. Additionally, circPDSS1 knockdown induced ferroptosis rather than other types of cell death in NSCLC cells. Mechanically, circPDSS1 functions as a “sponge” to inversely control miR-137 expression, which directly targets SLC7A11. Moreover, circPDSS1 silencing causes the downregulation of glutathione peroxidase 4 (GPX4) and glutamate-cysteine ligase catalytic subunit (GCLC).
Conclusions
Targeting the circPDSS1/miR-137/SLC7A11/GPX4/GCLC axis may be a promising strategy to kill NSCLC cells.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.