{"title":"基于遗传算法的提高声学模式识别能力的简单方法。","authors":"Huanxian Bu, Jun Han, Yuqi Xiao, Jie Zhou","doi":"10.1121/10.0026465","DOIUrl":null,"url":null,"abstract":"<p><p>This letter develops a simple approach of duct mode identification and reconstruction based on genetic algorithms, which can extend the azimuthal mode order range compared to the conventional method based on the (spatial) discrete Fourier transform. The underlying principle is reconstructing the dominant mode from the modal identification forward model through optimization by exploiting the sparsity of the mode amplitude vector. The performance is experimentally demonstrated for detections of one and two azimuthal modes under noisy conditions with nondominant modes. Overall, the proposed genetic-algorithm-based framework for solving acoustic inverse problems is beneficial to duct acoustic testing, particularly design evaluations of fan blades and acoustic liners for aeroengines.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"4 7","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple method improving acoustic mode identification capability based on genetic algorithms.\",\"authors\":\"Huanxian Bu, Jun Han, Yuqi Xiao, Jie Zhou\",\"doi\":\"10.1121/10.0026465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This letter develops a simple approach of duct mode identification and reconstruction based on genetic algorithms, which can extend the azimuthal mode order range compared to the conventional method based on the (spatial) discrete Fourier transform. The underlying principle is reconstructing the dominant mode from the modal identification forward model through optimization by exploiting the sparsity of the mode amplitude vector. The performance is experimentally demonstrated for detections of one and two azimuthal modes under noisy conditions with nondominant modes. Overall, the proposed genetic-algorithm-based framework for solving acoustic inverse problems is beneficial to duct acoustic testing, particularly design evaluations of fan blades and acoustic liners for aeroengines.</p>\",\"PeriodicalId\":73538,\"journal\":{\"name\":\"JASA express letters\",\"volume\":\"4 7\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JASA express letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0026465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0026465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
A simple method improving acoustic mode identification capability based on genetic algorithms.
This letter develops a simple approach of duct mode identification and reconstruction based on genetic algorithms, which can extend the azimuthal mode order range compared to the conventional method based on the (spatial) discrete Fourier transform. The underlying principle is reconstructing the dominant mode from the modal identification forward model through optimization by exploiting the sparsity of the mode amplitude vector. The performance is experimentally demonstrated for detections of one and two azimuthal modes under noisy conditions with nondominant modes. Overall, the proposed genetic-algorithm-based framework for solving acoustic inverse problems is beneficial to duct acoustic testing, particularly design evaluations of fan blades and acoustic liners for aeroengines.