{"title":"Lnc-216 调节 miR-143-5p /MMP2 信号轴加重视网膜内皮细胞功能障碍。","authors":"Fang Wang, Zhangmei Guo, Guiqi Yang, Fan Yang, Qi Zhou, Hongbin Lv","doi":"10.3233/CH-242163","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Diabetic retinopathy (DR) is a serious retinal vascular disease that affects many individuals in their prime working years. The present research aimed at whether and how LOC681216 (LNC-216) is involved in retinal vascular dysfunction under diabetic conditions.</p><p><strong>Methods: </strong>Rat retinal microvascular endothelial cells (RRMECs) treated with high glucose (HG) were used for functional analysis. Gene expression analysis was conducted using the Clariom D Affymetrix platform. The wound healing, transwell, and vascular tube formation assays were used to identify the migration, invasion, and tube formation capability of RRMECs. The dual-luciferase reporter confirmed the binding interaction between miR-143-5p and LNC-216 or matrix metallopeptidase 2 (MMP2).</p><p><strong>Results: </strong>Lnc-216 was upregulated in RRMECs treated with HG. Lnc-216 knockdown markedly suppressed the tube formation, cell migration, and wound healing of cultured RRMECs under HG conditions. Mechanistically, Lnc-216 acted as a miR-143-5p sponge to affect the biological activity of miR-143-5p, which led to increased expression of matrix metallopeptidase 2 (MMP2).</p><p><strong>Conclusions: </strong>Lnc-216 attenuates diabetic retinal vascular dysfunction through the miR-143-5p/MMP2 axis, providing a potential therapeutic strategy for DR.</p>","PeriodicalId":93943,"journal":{"name":"Clinical hemorheology and microcirculation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lnc-216 regulates the miR-143-5p /MMP2 signaling axis aggravates retinal endothelial cell dysfunction.\",\"authors\":\"Fang Wang, Zhangmei Guo, Guiqi Yang, Fan Yang, Qi Zhou, Hongbin Lv\",\"doi\":\"10.3233/CH-242163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Diabetic retinopathy (DR) is a serious retinal vascular disease that affects many individuals in their prime working years. The present research aimed at whether and how LOC681216 (LNC-216) is involved in retinal vascular dysfunction under diabetic conditions.</p><p><strong>Methods: </strong>Rat retinal microvascular endothelial cells (RRMECs) treated with high glucose (HG) were used for functional analysis. Gene expression analysis was conducted using the Clariom D Affymetrix platform. The wound healing, transwell, and vascular tube formation assays were used to identify the migration, invasion, and tube formation capability of RRMECs. The dual-luciferase reporter confirmed the binding interaction between miR-143-5p and LNC-216 or matrix metallopeptidase 2 (MMP2).</p><p><strong>Results: </strong>Lnc-216 was upregulated in RRMECs treated with HG. Lnc-216 knockdown markedly suppressed the tube formation, cell migration, and wound healing of cultured RRMECs under HG conditions. Mechanistically, Lnc-216 acted as a miR-143-5p sponge to affect the biological activity of miR-143-5p, which led to increased expression of matrix metallopeptidase 2 (MMP2).</p><p><strong>Conclusions: </strong>Lnc-216 attenuates diabetic retinal vascular dysfunction through the miR-143-5p/MMP2 axis, providing a potential therapeutic strategy for DR.</p>\",\"PeriodicalId\":93943,\"journal\":{\"name\":\"Clinical hemorheology and microcirculation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical hemorheology and microcirculation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/CH-242163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical hemorheology and microcirculation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/CH-242163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Purpose: Diabetic retinopathy (DR) is a serious retinal vascular disease that affects many individuals in their prime working years. The present research aimed at whether and how LOC681216 (LNC-216) is involved in retinal vascular dysfunction under diabetic conditions.
Methods: Rat retinal microvascular endothelial cells (RRMECs) treated with high glucose (HG) were used for functional analysis. Gene expression analysis was conducted using the Clariom D Affymetrix platform. The wound healing, transwell, and vascular tube formation assays were used to identify the migration, invasion, and tube formation capability of RRMECs. The dual-luciferase reporter confirmed the binding interaction between miR-143-5p and LNC-216 or matrix metallopeptidase 2 (MMP2).
Results: Lnc-216 was upregulated in RRMECs treated with HG. Lnc-216 knockdown markedly suppressed the tube formation, cell migration, and wound healing of cultured RRMECs under HG conditions. Mechanistically, Lnc-216 acted as a miR-143-5p sponge to affect the biological activity of miR-143-5p, which led to increased expression of matrix metallopeptidase 2 (MMP2).
Conclusions: Lnc-216 attenuates diabetic retinal vascular dysfunction through the miR-143-5p/MMP2 axis, providing a potential therapeutic strategy for DR.