芯片上的微生理学 HHT 平台可再现患者血管病变。

Christopher C W Hughes, Jennifer Fang, Christopher Hatch, Jillian Andrejecsk, William Van Trigt, Damie Juat, Yu-Hsi Chen, Satomi Matsumoto, Abraham Lee
{"title":"芯片上的微生理学 HHT 平台可再现患者血管病变。","authors":"Christopher C W Hughes, Jennifer Fang, Christopher Hatch, Jillian Andrejecsk, William Van Trigt, Damie Juat, Yu-Hsi Chen, Satomi Matsumoto, Abraham Lee","doi":"10.21203/rs.3.rs-4578507/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Hereditary Hemorrhagic Telangiectasia (HHT) is a rare congenital disease in which fragile vascular malformations (VM) - including small telangiectasias and large arteriovenous malformations (AVMs) - focally develop in multiple organs. There are few treatment options and no cure for HHT. Most HHT patients are heterozygous for loss-of-function mutations affecting Endoglin (ENG) or Alk1 (ACVRL1); however, why loss of these genes manifests as VMs remains poorly understood. To complement ongoing work in animal models, we have developed a fully human, cell-based microphysiological model based on our Vascularized Micro-organ (VMO) platform (the HHT-VMO) that recapitulates HHT patient VMs. Using inducible <i>ACVRL1</i> -knockdown, we control timing and extent of endogenous Alk1 expression in primary human endothelial cells (EC). Resulting HHT-VMO VMs develop over several days. Interestingly, in chimera experiments AVM-like lesions can be comprised of both Alk1-intact and Alk1-deficient EC, suggesting possible cell non-autonomous effects. Single cell RNA sequencing data are consistent with microvessel pruning/regression as contributing to AVM formation, while loss of PDGFB implicates mural cell recruitment. Finally, lesion formation is blocked by the VEGFR inhibitor pazopanib, mirroring positive effects of this drug in patients. In summary, we have developed a novel HHT-on-a-chip model that faithfully reproduces HHT patient lesions and that can be used to better understand HHT disease biology and identify potential new HHT drugs.</p>","PeriodicalId":94282,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213165/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Microphysiological HHT-on-a-Chip Platform Recapitulates Patient Vascular Lesions.\",\"authors\":\"Christopher C W Hughes, Jennifer Fang, Christopher Hatch, Jillian Andrejecsk, William Van Trigt, Damie Juat, Yu-Hsi Chen, Satomi Matsumoto, Abraham Lee\",\"doi\":\"10.21203/rs.3.rs-4578507/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hereditary Hemorrhagic Telangiectasia (HHT) is a rare congenital disease in which fragile vascular malformations (VM) - including small telangiectasias and large arteriovenous malformations (AVMs) - focally develop in multiple organs. There are few treatment options and no cure for HHT. Most HHT patients are heterozygous for loss-of-function mutations affecting Endoglin (ENG) or Alk1 (ACVRL1); however, why loss of these genes manifests as VMs remains poorly understood. To complement ongoing work in animal models, we have developed a fully human, cell-based microphysiological model based on our Vascularized Micro-organ (VMO) platform (the HHT-VMO) that recapitulates HHT patient VMs. Using inducible <i>ACVRL1</i> -knockdown, we control timing and extent of endogenous Alk1 expression in primary human endothelial cells (EC). Resulting HHT-VMO VMs develop over several days. Interestingly, in chimera experiments AVM-like lesions can be comprised of both Alk1-intact and Alk1-deficient EC, suggesting possible cell non-autonomous effects. Single cell RNA sequencing data are consistent with microvessel pruning/regression as contributing to AVM formation, while loss of PDGFB implicates mural cell recruitment. Finally, lesion formation is blocked by the VEGFR inhibitor pazopanib, mirroring positive effects of this drug in patients. In summary, we have developed a novel HHT-on-a-chip model that faithfully reproduces HHT patient lesions and that can be used to better understand HHT disease biology and identify potential new HHT drugs.</p>\",\"PeriodicalId\":94282,\"journal\":{\"name\":\"Research square\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213165/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-4578507/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-4578507/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遗传性出血性毛细血管扩张症(HHT)是一种罕见的先天性疾病,多个器官会出现脆性血管畸形(VM),包括小的毛细血管扩张和大的动静脉畸形(AVM)。目前,HHT 的治疗方法很少,也无法治愈。大多数 HHT 患者是影响 Endoglin (ENG) 或 Alk1 (ACVRL1) 的功能缺失突变的杂合子;然而,这些基因的缺失为何会表现为 VMs,目前仍不十分清楚。为了补充正在进行的动物模型研究,我们在血管化微型器官(VMO)平台(HHT-VMO)的基础上开发了一种基于细胞的全人类微生理学模型,该模型再现了 HHT 患者的血管瘤。通过诱导性 ACVRL1 敲除,我们控制了原代人内皮细胞(EC)中内源性 Alk1 的表达时间和程度。结果HHT-VMO血管瘤在数天内发育完成。有趣的是,在嵌合体实验中,视网膜血管瘤样病变可由未表达 Alk1 的内皮细胞和 Alk1 基因缺陷的内皮细胞组成,这表明可能存在细胞非自主效应。单细胞 RNA 测序数据表明,微血管修剪/退化是导致 AVM 形成的原因,而 PDGFB 的缺失则与壁细胞招募有关。最后,血管内皮生长因子受体(VEGFR)抑制剂帕唑帕尼(pazopanib)阻断了病变的形成,反映了这种药物对患者的积极作用。总之,我们已经开发出一种新型的芯片上HHT模型,它能忠实地再现HHT患者的病变,可用于更好地了解HHT疾病的生物学特性和鉴定潜在的HHT新药。字数:213 分类。生物科学、细胞生物学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Microphysiological HHT-on-a-Chip Platform Recapitulates Patient Vascular Lesions.

Hereditary Hemorrhagic Telangiectasia (HHT) is a rare congenital disease in which fragile vascular malformations (VM) - including small telangiectasias and large arteriovenous malformations (AVMs) - focally develop in multiple organs. There are few treatment options and no cure for HHT. Most HHT patients are heterozygous for loss-of-function mutations affecting Endoglin (ENG) or Alk1 (ACVRL1); however, why loss of these genes manifests as VMs remains poorly understood. To complement ongoing work in animal models, we have developed a fully human, cell-based microphysiological model based on our Vascularized Micro-organ (VMO) platform (the HHT-VMO) that recapitulates HHT patient VMs. Using inducible ACVRL1 -knockdown, we control timing and extent of endogenous Alk1 expression in primary human endothelial cells (EC). Resulting HHT-VMO VMs develop over several days. Interestingly, in chimera experiments AVM-like lesions can be comprised of both Alk1-intact and Alk1-deficient EC, suggesting possible cell non-autonomous effects. Single cell RNA sequencing data are consistent with microvessel pruning/regression as contributing to AVM formation, while loss of PDGFB implicates mural cell recruitment. Finally, lesion formation is blocked by the VEGFR inhibitor pazopanib, mirroring positive effects of this drug in patients. In summary, we have developed a novel HHT-on-a-chip model that faithfully reproduces HHT patient lesions and that can be used to better understand HHT disease biology and identify potential new HHT drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Long non-coding RNA Malat1 fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and the β-catenin-OPG/Jagged1 pathway. Dietary lipid is largely deposited in skin and rapidly affects insulating properties. Novel Machine Learning of DNA Methylation Patterns to Diagnose Complex Disease: Identification of Cerebral Palsy with Concurrent Epilepsy. The context-dependent epigenetic and organogenesis programs determine 3D vs. 2D cellular fitness of MYC-driven murine liver cancer cells. GZMK+CD8+ T cells Target A Specific Acinar Cell Type in Sjögren's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1