早期烟草暴露与儿童急性淋巴细胞白血病中 RAG 介导的异常重组有因果关系。

Adam de Smith, Tanxin Liu, Keren Xu, Anmol Pardeshi, Swe Swe Myint, Alice Kang, Libby Morimoto, Michael Lieber, Joseph Wiemels, Scott Kogan, Catherine Metayer
{"title":"早期烟草暴露与儿童急性淋巴细胞白血病中 RAG 介导的异常重组有因果关系。","authors":"Adam de Smith, Tanxin Liu, Keren Xu, Anmol Pardeshi, Swe Swe Myint, Alice Kang, Libby Morimoto, Michael Lieber, Joseph Wiemels, Scott Kogan, Catherine Metayer","doi":"10.21203/rs.3.rs-4510345/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lymphoblastic leukemia (ALL) is the most common cancer in children, yet few environmental risk factors have been identified. We previously found an association between early-life tobacco smoke exposure and frequency of somatic deletions of 8 leukemia driver genes among childhood ALL patients in the California Childhood Leukemia Study. To expand analysis genome-wide and examine potential mechanisms, we conducted tumor whole-genome sequencing in 35 ALL patients, including 18 with high prenatal tobacco exposure and 17 with low exposure as determined by established epigenetic biomarkers. High tobacco exposure patients had significantly more structural variants (P < .001) and deletions (P = .001) genome-wide than low exposure patients. Investigation of off-target RAG recombination revealed that 41% of deletions in the high tobacco exposure patients were putatively RAG-mediated (full RAG motif identified at one or both breakpoints) compared with only 21% in the low exposure group (P = .001). In a multilevel model, deletions in high tobacco exposure patients were 2.44-fold (95% CI:1.13-5.38) more likely to be putatively RAG-mediated than deletions in low exposure patients. No point mutational signatures were associated with prenatal tobacco exposure. Our findings suggest that early-life tobacco smoke exposure may promote leukemogenesis by driving development of somatic deletions in pre-leukemic lymphocytes via off-target RAG recombination.</p>","PeriodicalId":94282,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213169/pdf/","citationCount":"0","resultStr":"{\"title\":\"Early-life tobacco exposure is causally implicated in aberrant RAG-mediated recombination in childhood acute lymphoblastic leukemia.\",\"authors\":\"Adam de Smith, Tanxin Liu, Keren Xu, Anmol Pardeshi, Swe Swe Myint, Alice Kang, Libby Morimoto, Michael Lieber, Joseph Wiemels, Scott Kogan, Catherine Metayer\",\"doi\":\"10.21203/rs.3.rs-4510345/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute lymphoblastic leukemia (ALL) is the most common cancer in children, yet few environmental risk factors have been identified. We previously found an association between early-life tobacco smoke exposure and frequency of somatic deletions of 8 leukemia driver genes among childhood ALL patients in the California Childhood Leukemia Study. To expand analysis genome-wide and examine potential mechanisms, we conducted tumor whole-genome sequencing in 35 ALL patients, including 18 with high prenatal tobacco exposure and 17 with low exposure as determined by established epigenetic biomarkers. High tobacco exposure patients had significantly more structural variants (P < .001) and deletions (P = .001) genome-wide than low exposure patients. Investigation of off-target RAG recombination revealed that 41% of deletions in the high tobacco exposure patients were putatively RAG-mediated (full RAG motif identified at one or both breakpoints) compared with only 21% in the low exposure group (P = .001). In a multilevel model, deletions in high tobacco exposure patients were 2.44-fold (95% CI:1.13-5.38) more likely to be putatively RAG-mediated than deletions in low exposure patients. No point mutational signatures were associated with prenatal tobacco exposure. Our findings suggest that early-life tobacco smoke exposure may promote leukemogenesis by driving development of somatic deletions in pre-leukemic lymphocytes via off-target RAG recombination.</p>\",\"PeriodicalId\":94282,\"journal\":{\"name\":\"Research square\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213169/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-4510345/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-4510345/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

急性淋巴细胞白血病(ALL)是儿童最常见的癌症,但环境风险因素却很少被发现。我们曾在加利福尼亚儿童白血病研究中发现,早期烟草烟雾暴露与儿童 ALL 患者中 8 个白血病驱动基因的体细胞缺失频率之间存在关联。为了扩大全基因组分析范围并研究潜在机制,我们对35名ALL患者进行了肿瘤全基因组测序,其中包括18名产前烟草暴露程度高的患者和17名通过已建立的表观遗传生物标记确定的暴露程度低的患者。高烟草暴露患者的结构变异(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early-life tobacco exposure is causally implicated in aberrant RAG-mediated recombination in childhood acute lymphoblastic leukemia.

Acute lymphoblastic leukemia (ALL) is the most common cancer in children, yet few environmental risk factors have been identified. We previously found an association between early-life tobacco smoke exposure and frequency of somatic deletions of 8 leukemia driver genes among childhood ALL patients in the California Childhood Leukemia Study. To expand analysis genome-wide and examine potential mechanisms, we conducted tumor whole-genome sequencing in 35 ALL patients, including 18 with high prenatal tobacco exposure and 17 with low exposure as determined by established epigenetic biomarkers. High tobacco exposure patients had significantly more structural variants (P < .001) and deletions (P = .001) genome-wide than low exposure patients. Investigation of off-target RAG recombination revealed that 41% of deletions in the high tobacco exposure patients were putatively RAG-mediated (full RAG motif identified at one or both breakpoints) compared with only 21% in the low exposure group (P = .001). In a multilevel model, deletions in high tobacco exposure patients were 2.44-fold (95% CI:1.13-5.38) more likely to be putatively RAG-mediated than deletions in low exposure patients. No point mutational signatures were associated with prenatal tobacco exposure. Our findings suggest that early-life tobacco smoke exposure may promote leukemogenesis by driving development of somatic deletions in pre-leukemic lymphocytes via off-target RAG recombination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Long non-coding RNA Malat1 fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and the β-catenin-OPG/Jagged1 pathway. Dietary lipid is largely deposited in skin and rapidly affects insulating properties. Novel Machine Learning of DNA Methylation Patterns to Diagnose Complex Disease: Identification of Cerebral Palsy with Concurrent Epilepsy. The context-dependent epigenetic and organogenesis programs determine 3D vs. 2D cellular fitness of MYC-driven murine liver cancer cells. GZMK+CD8+ T cells Target A Specific Acinar Cell Type in Sjögren's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1