Tyr34 在人锰超氧化物歧化酶质子耦合电子传递中的作用。

Gloria Borgstahl, Jahaun Azadmanesh, Katelyn Slobodnik, Lucas Struble, Erika Cone, Medhanjali Dasgupta, William Lutz, Siddhartha Kumar, Amarnath Natarajan, Leighton Coates, Kevin Weiss, Dean Myles, Thomas Kroll
{"title":"Tyr34 在人锰超氧化物歧化酶质子耦合电子传递中的作用。","authors":"Gloria Borgstahl, Jahaun Azadmanesh, Katelyn Slobodnik, Lucas Struble, Erika Cone, Medhanjali Dasgupta, William Lutz, Siddhartha Kumar, Amarnath Natarajan, Leighton Coates, Kevin Weiss, Dean Myles, Thomas Kroll","doi":"10.21203/rs.3.rs-4494128/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O<sub>2</sub> <sup>●-</sup>) to molecular oxygen (O<sub>2</sub>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pK<sub>a</sub> due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD. To shed light on the role of Tyr34 MnSOD catalysis, we performed neutron diffraction, X-ray spectroscopy, and quantum chemistry calculations of Tyr34Phe MnSOD in various enzymatic states. The data identifies the contributions of Tyr34 in MnSOD activity that support mitochondrial function and presents a thorough characterization of how a single tyrosine modulates PCET catalysis.</p>","PeriodicalId":94282,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213228/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of Tyr34 in proton-coupled electron transfer of human manganese superoxide dismutase.\",\"authors\":\"Gloria Borgstahl, Jahaun Azadmanesh, Katelyn Slobodnik, Lucas Struble, Erika Cone, Medhanjali Dasgupta, William Lutz, Siddhartha Kumar, Amarnath Natarajan, Leighton Coates, Kevin Weiss, Dean Myles, Thomas Kroll\",\"doi\":\"10.21203/rs.3.rs-4494128/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O<sub>2</sub> <sup>●-</sup>) to molecular oxygen (O<sub>2</sub>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pK<sub>a</sub> due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD. To shed light on the role of Tyr34 MnSOD catalysis, we performed neutron diffraction, X-ray spectroscopy, and quantum chemistry calculations of Tyr34Phe MnSOD in various enzymatic states. The data identifies the contributions of Tyr34 in MnSOD activity that support mitochondrial function and presents a thorough characterization of how a single tyrosine modulates PCET catalysis.</p>\",\"PeriodicalId\":94282,\"journal\":{\"name\":\"Research square\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-4494128/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-4494128/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类锰超氧化物歧化酶(MnSOD)通过质子耦合电子转移(PCET)将超氧化物(O 2 ●- )转化为分子氧(O 2 )和过氧化氢(H 2 O 2 ),在控制活性氧(ROS)水平方面发挥着至关重要的作用。人类 MnSOD 的反应性由一个关键催化残基 Tyr34 的状态决定,在与线粒体功能障碍相关的各种疾病中,该残基会因翻译后硝化而失活。我们以前曾报道,Tyr34 由于靠近锰金属而具有不寻常的 pK a,并经历循环去质子化和质子化事件,以促进 MnSOD 的电子转移。为了揭示 Tyr34 MnSOD 的催化作用,我们对 Tyr34Phe MnSOD 在各种酶促状态下进行了中子衍射、X 射线光谱和量子化学计算。这些数据确定了 Tyr34 在支持线粒体功能的 MnSOD 活性中的贡献,并对单个酪氨酸如何调节 PCET 催化作用进行了全面描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of Tyr34 in proton-coupled electron transfer of human manganese superoxide dismutase.

Human manganese superoxide dismutase (MnSOD) plays a crucial role in controlling levels of reactive oxygen species (ROS) by converting superoxide (O2 ●-) to molecular oxygen (O2) and hydrogen peroxide (H2O2) with proton-coupled electron transfers (PCETs). The reactivity of human MnSOD is determined by the state of a key catalytic residue, Tyr34, that becomes post-translationally inactivated by nitration in various diseases associated with mitochondrial dysfunction. We previously reported that Tyr34 has an unusual pKa due to its proximity to the Mn metal and undergoes cyclic deprotonation and protonation events to promote the electron transfers of MnSOD. To shed light on the role of Tyr34 MnSOD catalysis, we performed neutron diffraction, X-ray spectroscopy, and quantum chemistry calculations of Tyr34Phe MnSOD in various enzymatic states. The data identifies the contributions of Tyr34 in MnSOD activity that support mitochondrial function and presents a thorough characterization of how a single tyrosine modulates PCET catalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Long non-coding RNA Malat1 fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and the β-catenin-OPG/Jagged1 pathway. Dietary lipid is largely deposited in skin and rapidly affects insulating properties. Novel Machine Learning of DNA Methylation Patterns to Diagnose Complex Disease: Identification of Cerebral Palsy with Concurrent Epilepsy. The context-dependent epigenetic and organogenesis programs determine 3D vs. 2D cellular fitness of MYC-driven murine liver cancer cells. GZMK+CD8+ T cells Target A Specific Acinar Cell Type in Sjögren's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1