典型海洋和大气现象的合成孔径雷达图像语义分割

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Earth System Science Data Pub Date : 2024-07-01 DOI:10.5194/essd-2024-222
Quankun Li, Xue Bai, Lizhen Hu, Liangsheng Li, Yaohui Bao, Xupu Geng, Xiao-Hai Yan
{"title":"典型海洋和大气现象的合成孔径雷达图像语义分割","authors":"Quankun Li, Xue Bai, Lizhen Hu, Liangsheng Li, Yaohui Bao, Xupu Geng, Xiao-Hai Yan","doi":"10.5194/essd-2024-222","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The ocean surface exhibits a variety of oceanic and atmospheric phenomena. Automatically detecting and identifying these phenomena is crucial for understanding oceanic dynamics and ocean-atmosphere interactions. In this study, we select 2,383 Sentinel-1 WV mode images and 2,628 IW mode sub-images to construct a semantic segmentation dataset that includes 12 typical oceanic and atmospheric phenomena. Each phenomenon is represented by approximately 400 sub-images, resulting in a total of 5,011 images. The images in this dataset have a resolution of 100 meters and dimensions of 256 × 256 pixels. We propose a modified Segformer model to segment semantically these multiple categories of oceanic and atmospheric phenomena. Experimental results show that the modified Segformer model achieves an average Dice coefficient of 80.98 %, an average IoU of 70.32 %, and an overall accuracy of 87.13 %, demonstrating robust segmentation performance of typical oceanic and atmospheric phenomena in SAR images.","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"61 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAR Image Semantic Segmentation of Typical Oceanic and Atmospheric Phenomena\",\"authors\":\"Quankun Li, Xue Bai, Lizhen Hu, Liangsheng Li, Yaohui Bao, Xupu Geng, Xiao-Hai Yan\",\"doi\":\"10.5194/essd-2024-222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> The ocean surface exhibits a variety of oceanic and atmospheric phenomena. Automatically detecting and identifying these phenomena is crucial for understanding oceanic dynamics and ocean-atmosphere interactions. In this study, we select 2,383 Sentinel-1 WV mode images and 2,628 IW mode sub-images to construct a semantic segmentation dataset that includes 12 typical oceanic and atmospheric phenomena. Each phenomenon is represented by approximately 400 sub-images, resulting in a total of 5,011 images. The images in this dataset have a resolution of 100 meters and dimensions of 256 × 256 pixels. We propose a modified Segformer model to segment semantically these multiple categories of oceanic and atmospheric phenomena. Experimental results show that the modified Segformer model achieves an average Dice coefficient of 80.98 %, an average IoU of 70.32 %, and an overall accuracy of 87.13 %, demonstrating robust segmentation performance of typical oceanic and atmospheric phenomena in SAR images.\",\"PeriodicalId\":48747,\"journal\":{\"name\":\"Earth System Science Data\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Science Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/essd-2024-222\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2024-222","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要海洋表面呈现出各种海洋和大气现象。自动检测和识别这些现象对于了解海洋动力学和海洋-大气相互作用至关重要。在本研究中,我们选择了 2,383 幅 Sentinel-1 WV 模式图像和 2,628 幅 IW 模式子图像,构建了一个语义分割数据集,其中包括 12 种典型的海洋和大气现象。每个现象由大约 400 幅子图像表示,因此总共有 5011 幅图像。该数据集中的图像分辨率为 100 米,尺寸为 256 × 256 像素。我们提出了一种改进的 Segformer 模型,用于从语义上分割这些多类别的海洋和大气现象。实验结果表明,修改后的 Segformer 模型的平均 Dice 系数为 80.98%,平均 IoU 为 70.32%,总体准确率为 87.13%,显示了对合成孔径雷达图像中典型海洋和大气现象的稳健分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAR Image Semantic Segmentation of Typical Oceanic and Atmospheric Phenomena
Abstract. The ocean surface exhibits a variety of oceanic and atmospheric phenomena. Automatically detecting and identifying these phenomena is crucial for understanding oceanic dynamics and ocean-atmosphere interactions. In this study, we select 2,383 Sentinel-1 WV mode images and 2,628 IW mode sub-images to construct a semantic segmentation dataset that includes 12 typical oceanic and atmospheric phenomena. Each phenomenon is represented by approximately 400 sub-images, resulting in a total of 5,011 images. The images in this dataset have a resolution of 100 meters and dimensions of 256 × 256 pixels. We propose a modified Segformer model to segment semantically these multiple categories of oceanic and atmospheric phenomena. Experimental results show that the modified Segformer model achieves an average Dice coefficient of 80.98 %, an average IoU of 70.32 %, and an overall accuracy of 87.13 %, demonstrating robust segmentation performance of typical oceanic and atmospheric phenomena in SAR images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
期刊最新文献
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard CCD-Rice: A long-term paddy rice distribution dataset in China at 30 m resolution SMOS-derived Antarctic thin sea ice thickness: data description and validation in the Weddell Sea Global Greenhouse Gas Reconciliation 2022 A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1