在具有多种生物功能的没食子酸-明胶复合水凝胶中加入磷酸锌锶,用于骨组织再生。

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-07-01 DOI:10.1021/acsbiomaterials.4c00143
Junming Wan, Liang Wu, Hanzhong Liu, Jin Zhao, Tong Xie, Xinhe Li, Shenghui Huang, Fei Yu
{"title":"在具有多种生物功能的没食子酸-明胶复合水凝胶中加入磷酸锌锶,用于骨组织再生。","authors":"Junming Wan, Liang Wu, Hanzhong Liu, Jin Zhao, Tong Xie, Xinhe Li, Shenghui Huang, Fei Yu","doi":"10.1021/acsbiomaterials.4c00143","DOIUrl":null,"url":null,"abstract":"<p><p>Large bone defects resulting from fractures and diseases have become a significant medical concern, usually impeding spontaneous healing through the body's self-repair mechanism. Calcium phosphate (CaP) bioceramics are widely utilized for bone regeneration, owing to their exceptional biocompatibility and osteoconductivity. However, their bioactivities in repairing healing-impaired bone defects characterized by conditions such as ischemia and infection remain limited. Recently, an emerging bioceramics zinc-strontium phosphate (ZSP, Zn<sub>2</sub>Sr(PO4)<sub>2</sub>) has received increasing attention due to its remarkable antibacterial and angiogenic abilities, while its plausible biomedical utility on tissue regeneration is nonetheless few. In this study, gallic acid-grafted gelatin (GGA) with antioxidant properties was injected into hydrogels to scavenge reactive oxygen species and regulate bone microenvironment while simultaneously incorporating ZSP to form GGA-ZSP hydrogels. The GGA-ZSP hydrogel exhibits low swelling, and <i>in vitro</i> cell experiments have demonstrated its favorable biocompatibility, osteogenic induction potential, and ability to promote vascular regeneration. In an <i>in vivo</i> bone defect model, the GGA-ZSP hydrogel significantly enhanced the bone regeneration rates. This study demonstrated that the GGA-ZSP hydrogel has pretty environmentally friendly therapeutic effects in osteogenic differentiation and massive bone defect repair.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporation of Zinc-Strontium Phosphate into Gallic Acid-Gelatin Composite Hydrogel with Multiple Biological Functions for Bone Tissue Regeneration.\",\"authors\":\"Junming Wan, Liang Wu, Hanzhong Liu, Jin Zhao, Tong Xie, Xinhe Li, Shenghui Huang, Fei Yu\",\"doi\":\"10.1021/acsbiomaterials.4c00143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large bone defects resulting from fractures and diseases have become a significant medical concern, usually impeding spontaneous healing through the body's self-repair mechanism. Calcium phosphate (CaP) bioceramics are widely utilized for bone regeneration, owing to their exceptional biocompatibility and osteoconductivity. However, their bioactivities in repairing healing-impaired bone defects characterized by conditions such as ischemia and infection remain limited. Recently, an emerging bioceramics zinc-strontium phosphate (ZSP, Zn<sub>2</sub>Sr(PO4)<sub>2</sub>) has received increasing attention due to its remarkable antibacterial and angiogenic abilities, while its plausible biomedical utility on tissue regeneration is nonetheless few. In this study, gallic acid-grafted gelatin (GGA) with antioxidant properties was injected into hydrogels to scavenge reactive oxygen species and regulate bone microenvironment while simultaneously incorporating ZSP to form GGA-ZSP hydrogels. The GGA-ZSP hydrogel exhibits low swelling, and <i>in vitro</i> cell experiments have demonstrated its favorable biocompatibility, osteogenic induction potential, and ability to promote vascular regeneration. In an <i>in vivo</i> bone defect model, the GGA-ZSP hydrogel significantly enhanced the bone regeneration rates. This study demonstrated that the GGA-ZSP hydrogel has pretty environmentally friendly therapeutic effects in osteogenic differentiation and massive bone defect repair.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c00143\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c00143","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

骨折和疾病导致的大面积骨缺损已成为一个重要的医学问题,通常会阻碍人体自我修复机制的自发愈合。磷酸钙(CaP)生物陶瓷具有优异的生物相容性和骨传导性,因此被广泛用于骨再生。然而,它们在修复因缺血和感染等情况造成的愈合受损骨缺损方面的生物活性仍然有限。最近,一种新兴的生物陶瓷磷酸锌锶(ZSP,Zn2Sr(PO4)2)因其显著的抗菌和血管生成能力而受到越来越多的关注,但其在组织再生方面的合理生物医学用途仍然很少。在本研究中,将具有抗氧化特性的没食子酸接枝明胶(GGA)注入水凝胶中,以清除活性氧并调节骨微环境,同时加入 ZSP,形成 GGA-ZSP 水凝胶。GGA-ZSP 水凝胶具有低膨胀性,体外细胞实验证明了其良好的生物相容性、成骨诱导潜力和促进血管再生的能力。在体内骨缺损模型中,GGA-ZSP 水凝胶显著提高了骨再生率。这项研究表明,GGA-ZSP 水凝胶在成骨分化和大规模骨缺损修复方面具有相当环保的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporation of Zinc-Strontium Phosphate into Gallic Acid-Gelatin Composite Hydrogel with Multiple Biological Functions for Bone Tissue Regeneration.

Large bone defects resulting from fractures and diseases have become a significant medical concern, usually impeding spontaneous healing through the body's self-repair mechanism. Calcium phosphate (CaP) bioceramics are widely utilized for bone regeneration, owing to their exceptional biocompatibility and osteoconductivity. However, their bioactivities in repairing healing-impaired bone defects characterized by conditions such as ischemia and infection remain limited. Recently, an emerging bioceramics zinc-strontium phosphate (ZSP, Zn2Sr(PO4)2) has received increasing attention due to its remarkable antibacterial and angiogenic abilities, while its plausible biomedical utility on tissue regeneration is nonetheless few. In this study, gallic acid-grafted gelatin (GGA) with antioxidant properties was injected into hydrogels to scavenge reactive oxygen species and regulate bone microenvironment while simultaneously incorporating ZSP to form GGA-ZSP hydrogels. The GGA-ZSP hydrogel exhibits low swelling, and in vitro cell experiments have demonstrated its favorable biocompatibility, osteogenic induction potential, and ability to promote vascular regeneration. In an in vivo bone defect model, the GGA-ZSP hydrogel significantly enhanced the bone regeneration rates. This study demonstrated that the GGA-ZSP hydrogel has pretty environmentally friendly therapeutic effects in osteogenic differentiation and massive bone defect repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Exploiting Matrix Stiffness to Overcome Drug Resistance. Selective Tumor Inhibition Effect of Drug-Free Layered Double Hydroxide-Based Films via Responding to Acidic Microenvironment. A Novel 3D Printed Model of Infected Human Hair Follicles to Demonstrate Targeted Delivery of Nanoantibiotics. Advanced Strategies for Strengthening the Immune Activation Effect of Traditional Antitumor Therapies. Incorporation of Zinc-Strontium Phosphate into Gallic Acid-Gelatin Composite Hydrogel with Multiple Biological Functions for Bone Tissue Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1