用于个性化治疗推荐的深度注意力 Q 网络。

Simin Ma, Junghwan Lee, Nicoleta Serban, Shihao Yang
{"title":"用于个性化治疗推荐的深度注意力 Q 网络。","authors":"Simin Ma, Junghwan Lee, Nicoleta Serban, Shihao Yang","doi":"10.1109/icdmw60847.2023.00048","DOIUrl":null,"url":null,"abstract":"<p><p>Tailoring treatment for severely ill patients is crucial yet challenging to achieve optimal healthcare outcomes. Recent advances in reinforcement learning offer promising personalized treatment recommendations. However, they often rely solely on a patient's current physiological state, which may not accurately represent the true health status of the patient. This limitation hampers policy learning and evaluation, undermining the effectiveness of the treatment. In this study, we propose Deep Attention Q-Network for personalized treatment recommendation, leveraging the Transformer architecture within a deep reinforcement learning framework to efficiently integrate historical observations of patients. We evaluated our proposed method on two real-world datasets: sepsis and acute hypotension patients, demonstrating its superiority over state-of-the-art methods. The source code for our model is available at https://github.com/stevenmsm/RL-ICU-DAQN.</p>","PeriodicalId":91379,"journal":{"name":"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining","volume":"2023 ","pages":"329-337"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216720/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep Attention Q-Network for Personalized Treatment Recommendation.\",\"authors\":\"Simin Ma, Junghwan Lee, Nicoleta Serban, Shihao Yang\",\"doi\":\"10.1109/icdmw60847.2023.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tailoring treatment for severely ill patients is crucial yet challenging to achieve optimal healthcare outcomes. Recent advances in reinforcement learning offer promising personalized treatment recommendations. However, they often rely solely on a patient's current physiological state, which may not accurately represent the true health status of the patient. This limitation hampers policy learning and evaluation, undermining the effectiveness of the treatment. In this study, we propose Deep Attention Q-Network for personalized treatment recommendation, leveraging the Transformer architecture within a deep reinforcement learning framework to efficiently integrate historical observations of patients. We evaluated our proposed method on two real-world datasets: sepsis and acute hypotension patients, demonstrating its superiority over state-of-the-art methods. The source code for our model is available at https://github.com/stevenmsm/RL-ICU-DAQN.</p>\",\"PeriodicalId\":91379,\"journal\":{\"name\":\"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining\",\"volume\":\"2023 \",\"pages\":\"329-337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216720/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icdmw60847.2023.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdmw60847.2023.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为重症患者量身定制治疗方案对于实现最佳医疗效果至关重要,但也极具挑战性。强化学习的最新进展为个性化治疗建议提供了良好的前景。然而,它们通常仅依赖于患者当前的生理状态,而这可能无法准确代表患者的真实健康状况。这一局限性妨碍了政策学习和评估,从而削弱了治疗的有效性。在本研究中,我们提出了用于个性化治疗推荐的深度注意力 Q 网络,利用深度强化学习框架中的 Transformer 架构来有效整合对患者的历史观察。我们在脓毒症和急性低血压患者这两个真实世界数据集上评估了我们提出的方法,证明它优于最先进的方法。我们模型的源代码可在 https://github.com/stevenmsm/RL-ICU-DAQN 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Attention Q-Network for Personalized Treatment Recommendation.

Tailoring treatment for severely ill patients is crucial yet challenging to achieve optimal healthcare outcomes. Recent advances in reinforcement learning offer promising personalized treatment recommendations. However, they often rely solely on a patient's current physiological state, which may not accurately represent the true health status of the patient. This limitation hampers policy learning and evaluation, undermining the effectiveness of the treatment. In this study, we propose Deep Attention Q-Network for personalized treatment recommendation, leveraging the Transformer architecture within a deep reinforcement learning framework to efficiently integrate historical observations of patients. We evaluated our proposed method on two real-world datasets: sepsis and acute hypotension patients, demonstrating its superiority over state-of-the-art methods. The source code for our model is available at https://github.com/stevenmsm/RL-ICU-DAQN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Attention Q-Network for Personalized Treatment Recommendation. Spatio-Temporal Trend Analysis of the Brazilian Elections Based on Twitter Data Process-oriented Iterative Multiple Alignment for Medical Process Mining. Generalized Additive Models from a Neural Network Perspective Data Modeling for Content-Based Support Environment Application on Epilepsy Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1