Farah Izana Abdullah , Nur Hidayahanum Hamid , Murni Marlina Abd Karim , Mohd Fakhrulddin Ismail , Nur Leena Wong Wai Sin , Mohd Salleh Kamaruddin
{"title":"促进鱼类健康的鱼蛋白水解物","authors":"Farah Izana Abdullah , Nur Hidayahanum Hamid , Murni Marlina Abd Karim , Mohd Fakhrulddin Ismail , Nur Leena Wong Wai Sin , Mohd Salleh Kamaruddin","doi":"10.1016/j.bcab.2024.103292","DOIUrl":null,"url":null,"abstract":"<div><p>As a top global player in the aquaculture industry, Malaysia has the potential to commercially produce Fish Protein Hydrolysate (FPH) to fulfil global aquafeed demands. Considering a large amount of fish byproducts produced from the head, guts, viscera, the bones, fins, scales and skin, this byproducts can be turned into valuable resources. This review aims to critically analyze the source of a FPH in terms of the production process, factors affecting the quality of fish hydrolysate and the benefit to aquaculture. Both fish and fish byproducts can be used as a source for the manufacturing of FPH. The production of FPH consists of three major stages; Pre-treatment, Hydrolysis, and Recovery. Protein hydrolysis can be accomplished via biological or chemical techniques. Enzymatic hydrolysis was preferable to produce FPH in high value-added products. The recovery step mainly involves separation, concentration, and drying process. There are two ways to make FPH: liquid and dry. Dried FPH is preferred since it has a longer shelf life and is simpler to store and transport. The (had a significant impact on the FPH's solubility, emulsifying capabilities, foaming ability, fat absorption capacity, and bitterness. Moreover, FPH possessed anti-oxidative, anti-hypertensive, antibacterial, immunomodulatory, growth-like hormone and anti-stress peptides. The number of goblet cells and the size of the villi served as excellent measures of the health and condition of the fish intestinal mucosa. These results support the notion that dietary hydrolysate supplementation improves intestinal health and condition and has positive effects on the intestinal mucosa.</p></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fish protein hydrolysate for fish health\",\"authors\":\"Farah Izana Abdullah , Nur Hidayahanum Hamid , Murni Marlina Abd Karim , Mohd Fakhrulddin Ismail , Nur Leena Wong Wai Sin , Mohd Salleh Kamaruddin\",\"doi\":\"10.1016/j.bcab.2024.103292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a top global player in the aquaculture industry, Malaysia has the potential to commercially produce Fish Protein Hydrolysate (FPH) to fulfil global aquafeed demands. Considering a large amount of fish byproducts produced from the head, guts, viscera, the bones, fins, scales and skin, this byproducts can be turned into valuable resources. This review aims to critically analyze the source of a FPH in terms of the production process, factors affecting the quality of fish hydrolysate and the benefit to aquaculture. Both fish and fish byproducts can be used as a source for the manufacturing of FPH. The production of FPH consists of three major stages; Pre-treatment, Hydrolysis, and Recovery. Protein hydrolysis can be accomplished via biological or chemical techniques. Enzymatic hydrolysis was preferable to produce FPH in high value-added products. The recovery step mainly involves separation, concentration, and drying process. There are two ways to make FPH: liquid and dry. Dried FPH is preferred since it has a longer shelf life and is simpler to store and transport. The (had a significant impact on the FPH's solubility, emulsifying capabilities, foaming ability, fat absorption capacity, and bitterness. Moreover, FPH possessed anti-oxidative, anti-hypertensive, antibacterial, immunomodulatory, growth-like hormone and anti-stress peptides. The number of goblet cells and the size of the villi served as excellent measures of the health and condition of the fish intestinal mucosa. These results support the notion that dietary hydrolysate supplementation improves intestinal health and condition and has positive effects on the intestinal mucosa.</p></div>\",\"PeriodicalId\":8774,\"journal\":{\"name\":\"Biocatalysis and agricultural biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis and agricultural biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878818124002767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818124002767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
As a top global player in the aquaculture industry, Malaysia has the potential to commercially produce Fish Protein Hydrolysate (FPH) to fulfil global aquafeed demands. Considering a large amount of fish byproducts produced from the head, guts, viscera, the bones, fins, scales and skin, this byproducts can be turned into valuable resources. This review aims to critically analyze the source of a FPH in terms of the production process, factors affecting the quality of fish hydrolysate and the benefit to aquaculture. Both fish and fish byproducts can be used as a source for the manufacturing of FPH. The production of FPH consists of three major stages; Pre-treatment, Hydrolysis, and Recovery. Protein hydrolysis can be accomplished via biological or chemical techniques. Enzymatic hydrolysis was preferable to produce FPH in high value-added products. The recovery step mainly involves separation, concentration, and drying process. There are two ways to make FPH: liquid and dry. Dried FPH is preferred since it has a longer shelf life and is simpler to store and transport. The (had a significant impact on the FPH's solubility, emulsifying capabilities, foaming ability, fat absorption capacity, and bitterness. Moreover, FPH possessed anti-oxidative, anti-hypertensive, antibacterial, immunomodulatory, growth-like hormone and anti-stress peptides. The number of goblet cells and the size of the villi served as excellent measures of the health and condition of the fish intestinal mucosa. These results support the notion that dietary hydrolysate supplementation improves intestinal health and condition and has positive effects on the intestinal mucosa.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.