{"title":"关于河口一维水文动力学模型的全球参数化,以埃姆斯河口为例","authors":"Keivan Kaveh, Andreas Malcherek","doi":"10.1016/j.envsoft.2024.106125","DOIUrl":null,"url":null,"abstract":"<div><p>Each submodel in a hydro-morphodynamic model has its own local calibration parameters, leading to a high degree of uncertainty in their application. This paper proposes a global parameterization framework of hydro-morphodynamic models, which involves the development and implementation of submodels that share some common calibration parameters. The proposed model reduces the total number of adjustable parameters while helping to better understand the physics of the problem. As a case study, a holistic 1D vertical numerical simulation of the Ems estuary has been established. This simulation is proficient in qualitatively reproducing observed profiles of vertical velocity, concentration, and velocity shear. Using the proposed global parameterization, the model is calibrated using only measured rheological data from the Ems estuary, with these parameters universally applied to all submodels, eliminating the need for separate calibration for other submodels. The simulation demonstrates a commendable agreement with measurements while concurrently reducing the number of calibration parameters.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224001865/pdfft?md5=cb56d341b9589e46adb7dd42e6319581&pid=1-s2.0-S1364815224001865-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the global parameterization of a 1DV hydromorphodynamic model of estuaries, the case of the Ems estuary\",\"authors\":\"Keivan Kaveh, Andreas Malcherek\",\"doi\":\"10.1016/j.envsoft.2024.106125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Each submodel in a hydro-morphodynamic model has its own local calibration parameters, leading to a high degree of uncertainty in their application. This paper proposes a global parameterization framework of hydro-morphodynamic models, which involves the development and implementation of submodels that share some common calibration parameters. The proposed model reduces the total number of adjustable parameters while helping to better understand the physics of the problem. As a case study, a holistic 1D vertical numerical simulation of the Ems estuary has been established. This simulation is proficient in qualitatively reproducing observed profiles of vertical velocity, concentration, and velocity shear. Using the proposed global parameterization, the model is calibrated using only measured rheological data from the Ems estuary, with these parameters universally applied to all submodels, eliminating the need for separate calibration for other submodels. The simulation demonstrates a commendable agreement with measurements while concurrently reducing the number of calibration parameters.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1364815224001865/pdfft?md5=cb56d341b9589e46adb7dd42e6319581&pid=1-s2.0-S1364815224001865-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224001865\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001865","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the global parameterization of a 1DV hydromorphodynamic model of estuaries, the case of the Ems estuary
Each submodel in a hydro-morphodynamic model has its own local calibration parameters, leading to a high degree of uncertainty in their application. This paper proposes a global parameterization framework of hydro-morphodynamic models, which involves the development and implementation of submodels that share some common calibration parameters. The proposed model reduces the total number of adjustable parameters while helping to better understand the physics of the problem. As a case study, a holistic 1D vertical numerical simulation of the Ems estuary has been established. This simulation is proficient in qualitatively reproducing observed profiles of vertical velocity, concentration, and velocity shear. Using the proposed global parameterization, the model is calibrated using only measured rheological data from the Ems estuary, with these parameters universally applied to all submodels, eliminating the need for separate calibration for other submodels. The simulation demonstrates a commendable agreement with measurements while concurrently reducing the number of calibration parameters.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.