基于转换器的自由词序语言转换依赖解析模型

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-07-01 DOI:10.1016/j.jksuci.2024.102107
Fatima Tuz Zuhra , Khalid Saleem , Surayya Naz
{"title":"基于转换器的自由词序语言转换依赖解析模型","authors":"Fatima Tuz Zuhra ,&nbsp;Khalid Saleem ,&nbsp;Surayya Naz","doi":"10.1016/j.jksuci.2024.102107","DOIUrl":null,"url":null,"abstract":"<div><p>Transformer models are the state-of-the-art in Natural Language Processing (NLP) and the core of the Large Language Models (LLMs). We propose a transformer-based model for transition-based dependency parsing of free word order languages. We have performed experiments on five treebanks from the Universal Dependencies (UD) dataset version 2.12. Our experiments show that a transformer model, trained with the dynamic word embeddings performs better than a multilayer perceptron trained on the state-of-the-art static word embeddings even if the dynamic word embeddings have a vocabulary size ten times smaller than the static word embeddings. The results show that the transformer trained on dynamic word embeddings achieves an unlabeled attachment score (UAS) of 84.17% for Urdu language which is <span><math><mrow><mo>≈</mo><mn>3</mn><mo>.</mo><mn>6</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mo>≈</mo><mn>1</mn><mo>.</mo><mn>9</mn><mtext>%</mtext></mrow></math></span> higher than the UAS scores of 80.56857% and 82.26859% achieved by the multilayer perceptron (MLP) using two static state-of-the-art word embeddings. The proposed approach is investigated for Arabic, Persian and Uyghur languages, in addition to Urdu, for UAS scores and the results suggest that the proposed solution outperform the MLP-based approaches.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 6","pages":"Article 102107"},"PeriodicalIF":5.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824001964/pdfft?md5=9f26f8ea4918de323a897e760f616273&pid=1-s2.0-S1319157824001964-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An accurate transformer-based model for transition-based dependency parsing of free word order languages\",\"authors\":\"Fatima Tuz Zuhra ,&nbsp;Khalid Saleem ,&nbsp;Surayya Naz\",\"doi\":\"10.1016/j.jksuci.2024.102107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transformer models are the state-of-the-art in Natural Language Processing (NLP) and the core of the Large Language Models (LLMs). We propose a transformer-based model for transition-based dependency parsing of free word order languages. We have performed experiments on five treebanks from the Universal Dependencies (UD) dataset version 2.12. Our experiments show that a transformer model, trained with the dynamic word embeddings performs better than a multilayer perceptron trained on the state-of-the-art static word embeddings even if the dynamic word embeddings have a vocabulary size ten times smaller than the static word embeddings. The results show that the transformer trained on dynamic word embeddings achieves an unlabeled attachment score (UAS) of 84.17% for Urdu language which is <span><math><mrow><mo>≈</mo><mn>3</mn><mo>.</mo><mn>6</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mo>≈</mo><mn>1</mn><mo>.</mo><mn>9</mn><mtext>%</mtext></mrow></math></span> higher than the UAS scores of 80.56857% and 82.26859% achieved by the multilayer perceptron (MLP) using two static state-of-the-art word embeddings. The proposed approach is investigated for Arabic, Persian and Uyghur languages, in addition to Urdu, for UAS scores and the results suggest that the proposed solution outperform the MLP-based approaches.</p></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":\"36 6\",\"pages\":\"Article 102107\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319157824001964/pdfft?md5=9f26f8ea4918de323a897e760f616273&pid=1-s2.0-S1319157824001964-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824001964\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824001964","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

转换器模型是自然语言处理(NLP)领域的最新技术,也是大型语言模型(LLM)的核心。我们提出了一种基于转换器的模型,用于对自由词序语言进行基于转换的依赖关系解析。我们在通用依存关系(UD)数据集 2.12 版中的五个树库上进行了实验。实验结果表明,使用动态词嵌入训练的转换器模型比使用最先进的静态词嵌入训练的多层感知器效果更好,即使动态词嵌入的词汇量比静态词嵌入小十倍。结果表明,在动态词嵌入上训练的变换器在乌尔都语中实现了 84.17% 的无标注附着得分(UAS),比使用两个最新静态词嵌入的多层感知器(MLP)实现的 80.56857% 和 82.26859% 的 UAS 得分分别高出≈3.6%和≈1.9%。除乌尔都语外,还对阿拉伯语、波斯语和维吾尔语的 UAS 分数进行了研究,结果表明所提出的解决方案优于基于 MLP 的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An accurate transformer-based model for transition-based dependency parsing of free word order languages

Transformer models are the state-of-the-art in Natural Language Processing (NLP) and the core of the Large Language Models (LLMs). We propose a transformer-based model for transition-based dependency parsing of free word order languages. We have performed experiments on five treebanks from the Universal Dependencies (UD) dataset version 2.12. Our experiments show that a transformer model, trained with the dynamic word embeddings performs better than a multilayer perceptron trained on the state-of-the-art static word embeddings even if the dynamic word embeddings have a vocabulary size ten times smaller than the static word embeddings. The results show that the transformer trained on dynamic word embeddings achieves an unlabeled attachment score (UAS) of 84.17% for Urdu language which is 3.6% and 1.9% higher than the UAS scores of 80.56857% and 82.26859% achieved by the multilayer perceptron (MLP) using two static state-of-the-art word embeddings. The proposed approach is investigated for Arabic, Persian and Uyghur languages, in addition to Urdu, for UAS scores and the results suggest that the proposed solution outperform the MLP-based approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
期刊最新文献
Visually meaningful image encryption for secure and authenticated data transmission using chaotic maps Leukocyte segmentation based on DenseREU-Net Knowledge-embedded multi-layer collaborative adaptive fusion network: Addressing challenges in foggy conditions and complex imaging Feature-fused residual network for time series classification Low-light image enhancement: A comprehensive review on methods, datasets and evaluation metrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1