基于六方氮化硼纳米片/石墨烯纳米板/纤维素纳米纤维的多功能热界面材料,可实现电磁干扰屏蔽和电气绝缘

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-06-25 DOI:10.1016/j.carbon.2024.119397
Jaeyoung Yun, Jaemin Lee, Jiheon Kim, Jeongwoo Lee, Wonjoon Choi
{"title":"基于六方氮化硼纳米片/石墨烯纳米板/纤维素纳米纤维的多功能热界面材料,可实现电磁干扰屏蔽和电气绝缘","authors":"Jaeyoung Yun,&nbsp;Jaemin Lee,&nbsp;Jiheon Kim,&nbsp;Jeongwoo Lee,&nbsp;Wonjoon Choi","doi":"10.1016/j.carbon.2024.119397","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal interface materials (TIMs) that block electromagnetic interference (EMI) and current leakage are essential for high-density, high-power devices and compact form factors of electronic and mobility platforms. However, their coupled thermal-electrical-electromagnetic characteristics involve mismatches in thermal conductivity, electrical insulation, and EMI shielding, limiting the multifunctionality. Herein, a sandwich-like structural design that rationally combines graphene nanoplatelets (GNPs), hexagonal boron nitride nanosheets (BNNSs) and cellulose nanofibers (CNFs) is presented toward multifunctional trilayer TIMs enabling high thermal conductivity, EMI shielding, electrical insulation, mechanical compatibility and flame retardancy. The top and bottom BNNSs serve as electrically insulating yet thermally conductive layers while the GNPs in the central layer mitigate EMI and the CNFs as a binder complete the mechanical properties for the lamella-like trilayers. The resulting TIM exhibits a high in-plane thermal conductivity (25.5 W/m·K), and the LED cooling system using the TIM demonstrates the capability of reducing the operating temperature. Furthermore, it shows a high-volume resistivity (4.12 × 10<sup>13</sup> Ω cm) and EMI shielding effectiveness (29.0 dB) at X-band frequencies. Its mechanical robustness is confirmed with tensile strength and elongation of 65.0 MPa and 2.36 %, and the high flame retardancy is validated. The outcomes will inspire tailoring multifunctional TIMs using lamellar structures that optimally combine micro/nanomaterials.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hexagonal boron nitride nanosheets/graphene nanoplatelets/cellulose nanofibers-based multifunctional thermal interface materials enabling electromagnetic interference shielding and electrical insulation\",\"authors\":\"Jaeyoung Yun,&nbsp;Jaemin Lee,&nbsp;Jiheon Kim,&nbsp;Jeongwoo Lee,&nbsp;Wonjoon Choi\",\"doi\":\"10.1016/j.carbon.2024.119397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal interface materials (TIMs) that block electromagnetic interference (EMI) and current leakage are essential for high-density, high-power devices and compact form factors of electronic and mobility platforms. However, their coupled thermal-electrical-electromagnetic characteristics involve mismatches in thermal conductivity, electrical insulation, and EMI shielding, limiting the multifunctionality. Herein, a sandwich-like structural design that rationally combines graphene nanoplatelets (GNPs), hexagonal boron nitride nanosheets (BNNSs) and cellulose nanofibers (CNFs) is presented toward multifunctional trilayer TIMs enabling high thermal conductivity, EMI shielding, electrical insulation, mechanical compatibility and flame retardancy. The top and bottom BNNSs serve as electrically insulating yet thermally conductive layers while the GNPs in the central layer mitigate EMI and the CNFs as a binder complete the mechanical properties for the lamella-like trilayers. The resulting TIM exhibits a high in-plane thermal conductivity (25.5 W/m·K), and the LED cooling system using the TIM demonstrates the capability of reducing the operating temperature. Furthermore, it shows a high-volume resistivity (4.12 × 10<sup>13</sup> Ω cm) and EMI shielding effectiveness (29.0 dB) at X-band frequencies. Its mechanical robustness is confirmed with tensile strength and elongation of 65.0 MPa and 2.36 %, and the high flame retardancy is validated. The outcomes will inspire tailoring multifunctional TIMs using lamellar structures that optimally combine micro/nanomaterials.</p></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000862232400616X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000862232400616X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

能够阻挡电磁干扰(EMI)和电流泄漏的热界面材料(TIM)对于高密度、大功率器件以及电子和移动平台的紧凑外形至关重要。然而,它们的热-电-电磁耦合特性涉及导热性、电绝缘性和电磁干扰屏蔽的不匹配,从而限制了其多功能性。本文介绍了一种将石墨烯纳米片(GNPs)、六方氮化硼纳米片(BNNSs)和纤维素纳米纤维(CNFs)合理地结合在一起的三明治状结构设计,从而实现了多功能三层 TIMs 的高导热性、电磁干扰屏蔽、电绝缘性、机械兼容性和阻燃性。顶部和底部的 BNNS 既是电绝缘层,又是导热层,而中心层中的 GNP 可减轻电磁干扰,CNF 作为粘合剂可完善薄片状三层材料的机械性能。由此产生的 TIM 具有很高的面内热导率(25.5 W/m-K),使用该 TIM 的 LED 冷却系统显示出降低工作温度的能力。此外,它还具有高体积电阻率(4.12 × 1013 Ω cm)和 X 波段频率下的电磁干扰屏蔽效果(29.0 dB)。拉伸强度和伸长率分别为 65.0 兆帕和 2.36%,其机械坚固性得到了证实,高阻燃性也得到了验证。这些成果将启发人们利用优化组合微/纳米材料的层状结构来定制多功能 TIM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hexagonal boron nitride nanosheets/graphene nanoplatelets/cellulose nanofibers-based multifunctional thermal interface materials enabling electromagnetic interference shielding and electrical insulation

Thermal interface materials (TIMs) that block electromagnetic interference (EMI) and current leakage are essential for high-density, high-power devices and compact form factors of electronic and mobility platforms. However, their coupled thermal-electrical-electromagnetic characteristics involve mismatches in thermal conductivity, electrical insulation, and EMI shielding, limiting the multifunctionality. Herein, a sandwich-like structural design that rationally combines graphene nanoplatelets (GNPs), hexagonal boron nitride nanosheets (BNNSs) and cellulose nanofibers (CNFs) is presented toward multifunctional trilayer TIMs enabling high thermal conductivity, EMI shielding, electrical insulation, mechanical compatibility and flame retardancy. The top and bottom BNNSs serve as electrically insulating yet thermally conductive layers while the GNPs in the central layer mitigate EMI and the CNFs as a binder complete the mechanical properties for the lamella-like trilayers. The resulting TIM exhibits a high in-plane thermal conductivity (25.5 W/m·K), and the LED cooling system using the TIM demonstrates the capability of reducing the operating temperature. Furthermore, it shows a high-volume resistivity (4.12 × 1013 Ω cm) and EMI shielding effectiveness (29.0 dB) at X-band frequencies. Its mechanical robustness is confirmed with tensile strength and elongation of 65.0 MPa and 2.36 %, and the high flame retardancy is validated. The outcomes will inspire tailoring multifunctional TIMs using lamellar structures that optimally combine micro/nanomaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Biomimetic mineralization synergistic combustion activation to construct honeycomb porous carbon anode for sodium-ion batteries Editorial Board Outside Front Cover - Journal name, Cover image, Volume issue details, ISSN, Cover Date, Elsevier Logo and Society Logo if required Multi-scale structural design of multilayer magnetic composite materials for ultra-wideband microwave absorption Mechanically neutral and facile monitoring of thermoset matrices with ultrathin and highly porous carbon nanotube films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1