{"title":"三阶贝克尔模型的加权单纯形中心点混合实验:R 最佳方法","authors":"Bushra Husain , Fariha Aslam","doi":"10.1016/j.spl.2024.110189","DOIUrl":null,"url":null,"abstract":"<div><p>The R-optimality criterion, suggested as a substitute for the widely used D-optimality criteria, is employed in experimental designs when the primary goal is to create a rectangular confidence region. This study explores R-optimal designs concerning third order Becker’s models and calculates weights for values of <span><math><mrow><mn>3</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mn>10</mn></mrow></math></span>. Additionally, it compares and contrasts the D-optimal and R-optimal designs.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Simplex Centroid Mixture Experiments for third order Becker’s models: The R-optimal approach\",\"authors\":\"Bushra Husain , Fariha Aslam\",\"doi\":\"10.1016/j.spl.2024.110189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The R-optimality criterion, suggested as a substitute for the widely used D-optimality criteria, is employed in experimental designs when the primary goal is to create a rectangular confidence region. This study explores R-optimal designs concerning third order Becker’s models and calculates weights for values of <span><math><mrow><mn>3</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mn>10</mn></mrow></math></span>. Additionally, it compares and contrasts the D-optimal and R-optimal designs.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weighted Simplex Centroid Mixture Experiments for third order Becker’s models: The R-optimal approach
The R-optimality criterion, suggested as a substitute for the widely used D-optimality criteria, is employed in experimental designs when the primary goal is to create a rectangular confidence region. This study explores R-optimal designs concerning third order Becker’s models and calculates weights for values of . Additionally, it compares and contrasts the D-optimal and R-optimal designs.