横向各向同性分层弹性半空间上的锥形压痕

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Mechanics of Materials Pub Date : 2024-06-29 DOI:10.1016/j.mechmat.2024.105081
Zhijie Jin , Ernian Pan , Zhiqing Zhang , Kaifu Liu
{"title":"横向各向同性分层弹性半空间上的锥形压痕","authors":"Zhijie Jin ,&nbsp;Ernian Pan ,&nbsp;Zhiqing Zhang ,&nbsp;Kaifu Liu","doi":"10.1016/j.mechmat.2024.105081","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel method for solving the static response of a conical indenter on a transversely isotropic and layered elastic half-space. The newly developed Fourier-Bessel series (FBS) system of vector functions, along with the unconditionally stable dual-variable and position method, is employed to derive the Green's function in the transversely isotropic and layered elastic half-space under a vertical ring load on the surface. To calculate the response at different field points on the surface, we apply discrete love numbers within the FBS vector system. The load densities in the discretized rings within the contact radius of the conical indenter are determined using the integral least-square method, along with a self-adaptive algorithm developed in this study. Finally, the relationship between the indentation depth (vertical displacement) and the applied load is obtained through force balance between the external load and the summed contact traction. The developed scheme is validated using existing exact solutions for the reduced homogeneous half-space case. Selected numerical results clearly demonstrate the effect of anisotropic material and layering on the indentation response. It is observed that, regardless of whether the structure is a stratified half-space or a layered structure with a rigid substrate, the material properties in the top layer have the most significant influence on the indentation behavior. In the case of a layered structure with an underlying elastic half-space, the material properties in the interlayer and bottom layer could also affect the indentation behaviors.</p></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conical indentation over a transversely isotropic and layered elastic half-space\",\"authors\":\"Zhijie Jin ,&nbsp;Ernian Pan ,&nbsp;Zhiqing Zhang ,&nbsp;Kaifu Liu\",\"doi\":\"10.1016/j.mechmat.2024.105081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a novel method for solving the static response of a conical indenter on a transversely isotropic and layered elastic half-space. The newly developed Fourier-Bessel series (FBS) system of vector functions, along with the unconditionally stable dual-variable and position method, is employed to derive the Green's function in the transversely isotropic and layered elastic half-space under a vertical ring load on the surface. To calculate the response at different field points on the surface, we apply discrete love numbers within the FBS vector system. The load densities in the discretized rings within the contact radius of the conical indenter are determined using the integral least-square method, along with a self-adaptive algorithm developed in this study. Finally, the relationship between the indentation depth (vertical displacement) and the applied load is obtained through force balance between the external load and the summed contact traction. The developed scheme is validated using existing exact solutions for the reduced homogeneous half-space case. Selected numerical results clearly demonstrate the effect of anisotropic material and layering on the indentation response. It is observed that, regardless of whether the structure is a stratified half-space or a layered structure with a rigid substrate, the material properties in the top layer have the most significant influence on the indentation behavior. In the case of a layered structure with an underlying elastic half-space, the material properties in the interlayer and bottom layer could also affect the indentation behaviors.</p></div>\",\"PeriodicalId\":18296,\"journal\":{\"name\":\"Mechanics of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016766362400173X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016766362400173X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新方法,用于求解锥形压头在横向各向同性分层弹性半空间上的静态响应。我们采用新开发的傅里叶-贝塞尔序列(FBS)矢量函数系统以及无条件稳定的双变量和位置法,推导了在表面垂直环载荷作用下横向各向同性分层弹性半空间中的格林函数。为了计算表面上不同场点的响应,我们在 FBS 向量系统中应用了离散爱数。锥形压头接触半径内离散环的载荷密度采用积分最小二乘法和本研究开发的自适应算法确定。最后,通过外部载荷与总接触牵引力之间的力平衡,得出压痕深度(垂直位移)与施加载荷之间的关系。利用现有的精确解法对所开发的方案进行了验证,该方案适用于缩小的均质半空间情况。选定的数值结果清楚地表明了各向异性材料和分层对压痕响应的影响。据观察,无论结构是分层的半空间还是具有刚性基底的分层结构,顶层的材料特性对压痕行为的影响最大。在底层为弹性半空间的分层结构中,层间和底层的材料特性也会影响压痕行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conical indentation over a transversely isotropic and layered elastic half-space

We propose a novel method for solving the static response of a conical indenter on a transversely isotropic and layered elastic half-space. The newly developed Fourier-Bessel series (FBS) system of vector functions, along with the unconditionally stable dual-variable and position method, is employed to derive the Green's function in the transversely isotropic and layered elastic half-space under a vertical ring load on the surface. To calculate the response at different field points on the surface, we apply discrete love numbers within the FBS vector system. The load densities in the discretized rings within the contact radius of the conical indenter are determined using the integral least-square method, along with a self-adaptive algorithm developed in this study. Finally, the relationship between the indentation depth (vertical displacement) and the applied load is obtained through force balance between the external load and the summed contact traction. The developed scheme is validated using existing exact solutions for the reduced homogeneous half-space case. Selected numerical results clearly demonstrate the effect of anisotropic material and layering on the indentation response. It is observed that, regardless of whether the structure is a stratified half-space or a layered structure with a rigid substrate, the material properties in the top layer have the most significant influence on the indentation behavior. In the case of a layered structure with an underlying elastic half-space, the material properties in the interlayer and bottom layer could also affect the indentation behaviors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
期刊最新文献
The elastic properties of fiber-reinforced materials with imperfect interfacial bondings: Analytical approximations versus full-field simulations Experimental and theoretical investigation of Chronic Lymphocytic Leukemia cell's viscoelastic contact mechanics using atomic force microscope Mechanism-based and data-driven approach to developing the constitutive model of viscoelastic elastomers A novel approach for accurate development of the incremental plastic multiplier and consistent tangent operator in thermo-elasto-plastic modeling of materials Electromechanical properties of different phases in ferroelectric crystals regulated by variously oriented electric fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1