包含稀释和颗粒与气体温度比效应的球形颗粒一般阻力系数模型

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2024-06-28 DOI:10.1016/j.ces.2024.120442
Lite Zhang, Yang Feng, Hao Guan, Sifan Wu, Huixia Jia
{"title":"包含稀释和颗粒与气体温度比效应的球形颗粒一般阻力系数模型","authors":"Lite Zhang,&nbsp;Yang Feng,&nbsp;Hao Guan,&nbsp;Sifan Wu,&nbsp;Huixia Jia","doi":"10.1016/j.ces.2024.120442","DOIUrl":null,"url":null,"abstract":"<div><p>A concept and model of two critical Reynolds numbers <em>Re<sub>p,cr</sub></em><sub>1</sub> and <em>Re<sub>p,cr</sub></em><sub>2</sub> corresponding respectively to onsets of drag crisis and recovery are proposed. A drag model at limits of zero particle Mach and Knudsen numbers is constructed. On this basis, we develop a general drag coefficient model applicable for a spherical particle traveling in a gas by using a large number of available data derived from the previous experiments, direct numerical simulations and direct simulation Monte-Carlo methods. The scope of applicability of the proposed drag model covers all flow regimes relative to the particle characterized by particle Reynolds and Mach (or Knudsen) numbers and different particle-to-gas temperature ratios. Its comparison with two latest general drag models shows the significantly smaller relative error. Furthermore, quasi-one dimensional simulations against two supersonic nozzle gas-particle flow experiments are conducted with an in-house code to validate its accuracy in comparison with the two drag models.</p></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general drag coefficient model for a spherical particle incorporating rarefaction and particle-to-gas temperature ratio effects\",\"authors\":\"Lite Zhang,&nbsp;Yang Feng,&nbsp;Hao Guan,&nbsp;Sifan Wu,&nbsp;Huixia Jia\",\"doi\":\"10.1016/j.ces.2024.120442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A concept and model of two critical Reynolds numbers <em>Re<sub>p,cr</sub></em><sub>1</sub> and <em>Re<sub>p,cr</sub></em><sub>2</sub> corresponding respectively to onsets of drag crisis and recovery are proposed. A drag model at limits of zero particle Mach and Knudsen numbers is constructed. On this basis, we develop a general drag coefficient model applicable for a spherical particle traveling in a gas by using a large number of available data derived from the previous experiments, direct numerical simulations and direct simulation Monte-Carlo methods. The scope of applicability of the proposed drag model covers all flow regimes relative to the particle characterized by particle Reynolds and Mach (or Knudsen) numbers and different particle-to-gas temperature ratios. Its comparison with two latest general drag models shows the significantly smaller relative error. Furthermore, quasi-one dimensional simulations against two supersonic nozzle gas-particle flow experiments are conducted with an in-house code to validate its accuracy in comparison with the two drag models.</p></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250924007425\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924007425","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

提出了两个临界雷诺数 Rep,cr1 和 Rep,cr2 的概念和模型,它们分别对应于阻力危机和恢复的开始。构建了粒子马赫数和努森数为零时的阻力模型。在此基础上,我们利用从以前的实验、直接数值模拟和直接模拟蒙特卡洛方法中获得的大量可用数据,建立了适用于在气体中运动的球形粒子的一般阻力系数模型。所提出的阻力模型的适用范围涵盖了相对于粒子的所有流态,这些流态的特点是粒子的雷诺数和马赫数(或努森数)以及不同的粒子与气体温度比。它与两个最新的一般阻力模型的比较表明,相对误差明显较小。此外,还使用内部代码对两个超音速喷嘴气体-颗粒流动实验进行了准一维模拟,以验证其与两个阻力模型相比的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A general drag coefficient model for a spherical particle incorporating rarefaction and particle-to-gas temperature ratio effects

A concept and model of two critical Reynolds numbers Rep,cr1 and Rep,cr2 corresponding respectively to onsets of drag crisis and recovery are proposed. A drag model at limits of zero particle Mach and Knudsen numbers is constructed. On this basis, we develop a general drag coefficient model applicable for a spherical particle traveling in a gas by using a large number of available data derived from the previous experiments, direct numerical simulations and direct simulation Monte-Carlo methods. The scope of applicability of the proposed drag model covers all flow regimes relative to the particle characterized by particle Reynolds and Mach (or Knudsen) numbers and different particle-to-gas temperature ratios. Its comparison with two latest general drag models shows the significantly smaller relative error. Furthermore, quasi-one dimensional simulations against two supersonic nozzle gas-particle flow experiments are conducted with an in-house code to validate its accuracy in comparison with the two drag models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Metal ionic liquid-based hybrid membranes for ammonia separation through moderate interaction sites and cooperative transport channels Neighbouring metal and Lewis acid sites: Synergistic cooperators for the selective hydrogenation of C = O in anthraquinone Uncovering the effect of pH on the flotation selectivity of dodecyl sulfonate towards barite, fluorite and calcite through AFM force Heat and mass transfer limitations of released power for thermochemical heat storage process: Three main operation modes Development of molten salt–based processes through thermodynamic evaluation assisted by machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1