{"title":"烯烃与 CF2FG 分子的区域选择性双官能化","authors":"Thomas Castanheiro, Tatiana Besset","doi":"10.1016/j.jfluchem.2024.110296","DOIUrl":null,"url":null,"abstract":"<div><p>The organofluorine chemistry field has steadily increased over the years. In particular, the difunctionalization of unsaturated compounds is an efficient pathway toward the formation of regioselective and highly functionalized aliphatic compounds. This review depicts the recent advances made for simultaneously forming C−FG<sup>1</sup> and C−CF<sub>2</sub>FG<sup>2</sup> on alkenes (FG = functional group) by catalysis. This review highlights approaches involving transition metal-catalyzed transformations and one electron manifold.</p></div>","PeriodicalId":357,"journal":{"name":"Journal of Fluorine Chemistry","volume":"277 ","pages":"Article 110296"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022113924000563/pdfft?md5=3631937256e783f9f6d7c7558b91ab46&pid=1-s2.0-S0022113924000563-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Regioselective difunctionalization of alkenes with CF2FG Moieties\",\"authors\":\"Thomas Castanheiro, Tatiana Besset\",\"doi\":\"10.1016/j.jfluchem.2024.110296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The organofluorine chemistry field has steadily increased over the years. In particular, the difunctionalization of unsaturated compounds is an efficient pathway toward the formation of regioselective and highly functionalized aliphatic compounds. This review depicts the recent advances made for simultaneously forming C−FG<sup>1</sup> and C−CF<sub>2</sub>FG<sup>2</sup> on alkenes (FG = functional group) by catalysis. This review highlights approaches involving transition metal-catalyzed transformations and one electron manifold.</p></div>\",\"PeriodicalId\":357,\"journal\":{\"name\":\"Journal of Fluorine Chemistry\",\"volume\":\"277 \",\"pages\":\"Article 110296\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022113924000563/pdfft?md5=3631937256e783f9f6d7c7558b91ab46&pid=1-s2.0-S0022113924000563-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorine Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022113924000563\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorine Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022113924000563","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Regioselective difunctionalization of alkenes with CF2FG Moieties
The organofluorine chemistry field has steadily increased over the years. In particular, the difunctionalization of unsaturated compounds is an efficient pathway toward the formation of regioselective and highly functionalized aliphatic compounds. This review depicts the recent advances made for simultaneously forming C−FG1 and C−CF2FG2 on alkenes (FG = functional group) by catalysis. This review highlights approaches involving transition metal-catalyzed transformations and one electron manifold.
期刊介绍:
The Journal of Fluorine Chemistry contains reviews, original papers and short communications. The journal covers all aspects of pure and applied research on the chemistry as well as on the applications of fluorine, and of compounds or materials where fluorine exercises significant effects. This can include all chemistry research areas (inorganic, organic, organometallic, macromolecular and physical chemistry) but also includes papers on biological/biochemical related aspects of Fluorine chemistry as well as medicinal, agrochemical and pharmacological research. The Journal of Fluorine Chemistry also publishes environmental and industrial papers dealing with aspects of Fluorine chemistry on energy and material sciences. Preparative and physico-chemical investigations as well as theoretical, structural and mechanistic aspects are covered. The Journal, however, does not accept work of purely routine nature.
For reviews and special issues on particular topics of fluorine chemistry or from selected symposia, please contact the Regional Editors for further details.