Linke Ge , Siyuan Wang , Crispin Halsall , Xuanyan Li , Dongxiao Bai , Shengkai Cao , Peng Zhang
{"title":"冰中和水中常用抗生素的环境光化学新见解:动力学和影响因素的比较","authors":"Linke Ge , Siyuan Wang , Crispin Halsall , Xuanyan Li , Dongxiao Bai , Shengkai Cao , Peng Zhang","doi":"10.1016/j.emcon.2024.100382","DOIUrl":null,"url":null,"abstract":"<div><p>The photochemistry of organic contaminants present in ice is receiving growing attention, given the wide presence of ice during winter in temperate regions as well as Polar and mountain environments. Differences between ice photochemistry and aqueous photochemistry, however, influence the quantitative fate and transformation of organic chemicals present in freshwater, marine and ice-cap environments and these differences need to be explored. Here we comparatively studied the ice and aqueous photochemistry of three antibiotics [levofloxacin (LVX), sulfamerazine (SM), and chlortetracycline (CTC)] under the same simulated sunlight (<em>λ</em> > 290 nm). Their photodegradation in ice/water followed pseudo-first-order kinetics, whereby the photolytic rates of LVX in ice and water were found to be similar, SM photodegraded faster in ice, while CTC underwent slower photodegradation in ice. Whether individual antibiotics underwent faster photodegradation in ice or not depends on the specific concentration effect and cage effect coexisting in the ice compartment. In most cases, the fastest photodegradation occurred in freshwater ice or in fresh water, and the slowest photolysis occurred in pure-water ice or in pure water. This can be attributed to the effects of key photochemical reactive constituents of Cl<sup>−</sup>, HA, NO<sub>3</sub><sup>−</sup> and Fe(III), that exist in natural waters. These constituents at certain levels showed significant effects (<em>P</em> < 0.1) on the photolysis, not only in ice but also in water. However, these individual constituents at a given concentration, serve to either enhance or suppress the photoreaction, depending on the specific antibiotic and the matrix type (e.g., ice or aqueous solution). Furthermore, extrapolation of the laboratory findings to cold environments indicate that pharmaceuticals present in ice will have a different photofate compared to water. These results are of particular relevance for those regions that experience seasonal ice cover in fresh water and coastal marine systems.</p></div>","PeriodicalId":11539,"journal":{"name":"Emerging Contaminants","volume":"10 4","pages":"Article 100382"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405665024000830/pdfft?md5=ca8241ea96433e34154d59beb0d58ae6&pid=1-s2.0-S2405665024000830-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New insights into the environmental photochemistry of common-use antibiotics in ice and in water: A comparison of kinetics and influencing factors\",\"authors\":\"Linke Ge , Siyuan Wang , Crispin Halsall , Xuanyan Li , Dongxiao Bai , Shengkai Cao , Peng Zhang\",\"doi\":\"10.1016/j.emcon.2024.100382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The photochemistry of organic contaminants present in ice is receiving growing attention, given the wide presence of ice during winter in temperate regions as well as Polar and mountain environments. Differences between ice photochemistry and aqueous photochemistry, however, influence the quantitative fate and transformation of organic chemicals present in freshwater, marine and ice-cap environments and these differences need to be explored. Here we comparatively studied the ice and aqueous photochemistry of three antibiotics [levofloxacin (LVX), sulfamerazine (SM), and chlortetracycline (CTC)] under the same simulated sunlight (<em>λ</em> > 290 nm). Their photodegradation in ice/water followed pseudo-first-order kinetics, whereby the photolytic rates of LVX in ice and water were found to be similar, SM photodegraded faster in ice, while CTC underwent slower photodegradation in ice. Whether individual antibiotics underwent faster photodegradation in ice or not depends on the specific concentration effect and cage effect coexisting in the ice compartment. In most cases, the fastest photodegradation occurred in freshwater ice or in fresh water, and the slowest photolysis occurred in pure-water ice or in pure water. This can be attributed to the effects of key photochemical reactive constituents of Cl<sup>−</sup>, HA, NO<sub>3</sub><sup>−</sup> and Fe(III), that exist in natural waters. These constituents at certain levels showed significant effects (<em>P</em> < 0.1) on the photolysis, not only in ice but also in water. However, these individual constituents at a given concentration, serve to either enhance or suppress the photoreaction, depending on the specific antibiotic and the matrix type (e.g., ice or aqueous solution). Furthermore, extrapolation of the laboratory findings to cold environments indicate that pharmaceuticals present in ice will have a different photofate compared to water. These results are of particular relevance for those regions that experience seasonal ice cover in fresh water and coastal marine systems.</p></div>\",\"PeriodicalId\":11539,\"journal\":{\"name\":\"Emerging Contaminants\",\"volume\":\"10 4\",\"pages\":\"Article 100382\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405665024000830/pdfft?md5=ca8241ea96433e34154d59beb0d58ae6&pid=1-s2.0-S2405665024000830-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Contaminants\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405665024000830\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Contaminants","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405665024000830","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
New insights into the environmental photochemistry of common-use antibiotics in ice and in water: A comparison of kinetics and influencing factors
The photochemistry of organic contaminants present in ice is receiving growing attention, given the wide presence of ice during winter in temperate regions as well as Polar and mountain environments. Differences between ice photochemistry and aqueous photochemistry, however, influence the quantitative fate and transformation of organic chemicals present in freshwater, marine and ice-cap environments and these differences need to be explored. Here we comparatively studied the ice and aqueous photochemistry of three antibiotics [levofloxacin (LVX), sulfamerazine (SM), and chlortetracycline (CTC)] under the same simulated sunlight (λ > 290 nm). Their photodegradation in ice/water followed pseudo-first-order kinetics, whereby the photolytic rates of LVX in ice and water were found to be similar, SM photodegraded faster in ice, while CTC underwent slower photodegradation in ice. Whether individual antibiotics underwent faster photodegradation in ice or not depends on the specific concentration effect and cage effect coexisting in the ice compartment. In most cases, the fastest photodegradation occurred in freshwater ice or in fresh water, and the slowest photolysis occurred in pure-water ice or in pure water. This can be attributed to the effects of key photochemical reactive constituents of Cl−, HA, NO3− and Fe(III), that exist in natural waters. These constituents at certain levels showed significant effects (P < 0.1) on the photolysis, not only in ice but also in water. However, these individual constituents at a given concentration, serve to either enhance or suppress the photoreaction, depending on the specific antibiotic and the matrix type (e.g., ice or aqueous solution). Furthermore, extrapolation of the laboratory findings to cold environments indicate that pharmaceuticals present in ice will have a different photofate compared to water. These results are of particular relevance for those regions that experience seasonal ice cover in fresh water and coastal marine systems.
期刊介绍:
Emerging Contaminants is an outlet for world-leading research addressing problems associated with environmental contamination caused by emerging contaminants and their solutions. Emerging contaminants are defined as chemicals that are not currently (or have been only recently) regulated and about which there exist concerns regarding their impact on human or ecological health. Examples of emerging contaminants include disinfection by-products, pharmaceutical and personal care products, persistent organic chemicals, and mercury etc. as well as their degradation products. We encourage papers addressing science that facilitates greater understanding of the nature, extent, and impacts of the presence of emerging contaminants in the environment; technology that exploits original principles to reduce and control their environmental presence; as well as the development, implementation and efficacy of national and international policies to protect human health and the environment from emerging contaminants.