Samuel Hellman PhD , Laszlo Voros MS , Victoria Y. Yu PhD , Dale M. Lovelock PhD , Sean Berry PhD , Lei Zhang PhD , Margie Hunt MS , Joseph O. Deasy PhD , Laura Cervino PhD
{"title":"使用计算机数控(CNC)铣削聚苯乙烯模具的放射治疗固定装置无仿真替换解决方案","authors":"Samuel Hellman PhD , Laszlo Voros MS , Victoria Y. Yu PhD , Dale M. Lovelock PhD , Sean Berry PhD , Lei Zhang PhD , Margie Hunt MS , Joseph O. Deasy PhD , Laura Cervino PhD","doi":"10.1016/j.adro.2024.101544","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>In radiation therapy (RT), if an immobilization device is lost or damaged, the patient may need to be brought back for resimulation, device fabrication, and treatment planning, causing additional imaging radiation exposure, inconvenience, cost, and delay. We describe a simulation-free method for replacing lost or damaged RT immobilization devices.</p></div><div><h3>Methods and Materials</h3><p>Replacement immobilization devices were fabricated using existing simulation scans as design templates by computer numerical control (CNC) milling of molds made from extruded polystyrene (XPS). XPS material attenuation and bolusing properties were evaluated, a standard workflow was established, and 12 patients were treated. Setup reproducibility was analyzed postfacto using Dice similarity coefficient (DSC) and mean distance to agreement (MDA) calculations comparing onboard treatment imaging with computed tomography (CT) simulations.</p></div><div><h3>Results</h3><p>Results showed that XPS foam material had less dosimetric impact (attenuation and bolusing) than materials used for our standard immobilization devices. The average direct cost to produce each replacement mold was $242.17, compared with over $2000 for standard resimulation. Hands-on time to manufacture was 86.3 minutes, whereas molds were delivered in as little as 4 hours and mostly within 24 hours, compared with a week or more required for standard resimulation. Each mold was optically scanned after production and was measured to be within 2-mm tolerance (pointwise displacement) of design input. All patients were successfully treated using the CNC-milled foam mold replacements, and pretreatment imaging verified satisfactory clinical setup reproduction for each case. The external body contours from the setup cone beam CT and the original CT simulation with matching superior-inferior extent were compared by calculating the DSC and MDA. DSC average was 0.966 (SD, 0.011), and MDA average was 2.694 mm (SD, 0.986).</p></div><div><h3>Conclusions</h3><p>CNC milling of XPS foam is a quicker and more convenient solution than traditional resimulation for replacing lost or damaged RT immobilization devices. Satisfactory patient immobilization, low dosimetric impact compared with standard immobilization devices, and strong correlation of onboard contours with CT simulations are shown. We share our clinical experience, workflow, and manufacturing guide to help other clinicians who may want to adopt this solution.</p></div>","PeriodicalId":7390,"journal":{"name":"Advances in Radiation Oncology","volume":"9 8","pages":"Article 101544"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452109424001076/pdfft?md5=65a237c1b6cd6e04708b4dc805634c32&pid=1-s2.0-S2452109424001076-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A Simulation-Free Replacement Solution for Radiation Therapy Immobilization Devices Using Computer Numerical Control (CNC) -Milled Polystyrene Molds\",\"authors\":\"Samuel Hellman PhD , Laszlo Voros MS , Victoria Y. Yu PhD , Dale M. Lovelock PhD , Sean Berry PhD , Lei Zhang PhD , Margie Hunt MS , Joseph O. Deasy PhD , Laura Cervino PhD\",\"doi\":\"10.1016/j.adro.2024.101544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>In radiation therapy (RT), if an immobilization device is lost or damaged, the patient may need to be brought back for resimulation, device fabrication, and treatment planning, causing additional imaging radiation exposure, inconvenience, cost, and delay. We describe a simulation-free method for replacing lost or damaged RT immobilization devices.</p></div><div><h3>Methods and Materials</h3><p>Replacement immobilization devices were fabricated using existing simulation scans as design templates by computer numerical control (CNC) milling of molds made from extruded polystyrene (XPS). XPS material attenuation and bolusing properties were evaluated, a standard workflow was established, and 12 patients were treated. Setup reproducibility was analyzed postfacto using Dice similarity coefficient (DSC) and mean distance to agreement (MDA) calculations comparing onboard treatment imaging with computed tomography (CT) simulations.</p></div><div><h3>Results</h3><p>Results showed that XPS foam material had less dosimetric impact (attenuation and bolusing) than materials used for our standard immobilization devices. The average direct cost to produce each replacement mold was $242.17, compared with over $2000 for standard resimulation. Hands-on time to manufacture was 86.3 minutes, whereas molds were delivered in as little as 4 hours and mostly within 24 hours, compared with a week or more required for standard resimulation. Each mold was optically scanned after production and was measured to be within 2-mm tolerance (pointwise displacement) of design input. All patients were successfully treated using the CNC-milled foam mold replacements, and pretreatment imaging verified satisfactory clinical setup reproduction for each case. The external body contours from the setup cone beam CT and the original CT simulation with matching superior-inferior extent were compared by calculating the DSC and MDA. DSC average was 0.966 (SD, 0.011), and MDA average was 2.694 mm (SD, 0.986).</p></div><div><h3>Conclusions</h3><p>CNC milling of XPS foam is a quicker and more convenient solution than traditional resimulation for replacing lost or damaged RT immobilization devices. Satisfactory patient immobilization, low dosimetric impact compared with standard immobilization devices, and strong correlation of onboard contours with CT simulations are shown. We share our clinical experience, workflow, and manufacturing guide to help other clinicians who may want to adopt this solution.</p></div>\",\"PeriodicalId\":7390,\"journal\":{\"name\":\"Advances in Radiation Oncology\",\"volume\":\"9 8\",\"pages\":\"Article 101544\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452109424001076/pdfft?md5=65a237c1b6cd6e04708b4dc805634c32&pid=1-s2.0-S2452109424001076-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452109424001076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452109424001076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
A Simulation-Free Replacement Solution for Radiation Therapy Immobilization Devices Using Computer Numerical Control (CNC) -Milled Polystyrene Molds
Purpose
In radiation therapy (RT), if an immobilization device is lost or damaged, the patient may need to be brought back for resimulation, device fabrication, and treatment planning, causing additional imaging radiation exposure, inconvenience, cost, and delay. We describe a simulation-free method for replacing lost or damaged RT immobilization devices.
Methods and Materials
Replacement immobilization devices were fabricated using existing simulation scans as design templates by computer numerical control (CNC) milling of molds made from extruded polystyrene (XPS). XPS material attenuation and bolusing properties were evaluated, a standard workflow was established, and 12 patients were treated. Setup reproducibility was analyzed postfacto using Dice similarity coefficient (DSC) and mean distance to agreement (MDA) calculations comparing onboard treatment imaging with computed tomography (CT) simulations.
Results
Results showed that XPS foam material had less dosimetric impact (attenuation and bolusing) than materials used for our standard immobilization devices. The average direct cost to produce each replacement mold was $242.17, compared with over $2000 for standard resimulation. Hands-on time to manufacture was 86.3 minutes, whereas molds were delivered in as little as 4 hours and mostly within 24 hours, compared with a week or more required for standard resimulation. Each mold was optically scanned after production and was measured to be within 2-mm tolerance (pointwise displacement) of design input. All patients were successfully treated using the CNC-milled foam mold replacements, and pretreatment imaging verified satisfactory clinical setup reproduction for each case. The external body contours from the setup cone beam CT and the original CT simulation with matching superior-inferior extent were compared by calculating the DSC and MDA. DSC average was 0.966 (SD, 0.011), and MDA average was 2.694 mm (SD, 0.986).
Conclusions
CNC milling of XPS foam is a quicker and more convenient solution than traditional resimulation for replacing lost or damaged RT immobilization devices. Satisfactory patient immobilization, low dosimetric impact compared with standard immobilization devices, and strong correlation of onboard contours with CT simulations are shown. We share our clinical experience, workflow, and manufacturing guide to help other clinicians who may want to adopt this solution.
期刊介绍:
The purpose of Advances is to provide information for clinicians who use radiation therapy by publishing: Clinical trial reports and reanalyses. Basic science original reports. Manuscripts examining health services research, comparative and cost effectiveness research, and systematic reviews. Case reports documenting unusual problems and solutions. High quality multi and single institutional series, as well as other novel retrospective hypothesis generating series. Timely critical reviews on important topics in radiation oncology, such as side effects. Articles reporting the natural history of disease and patterns of failure, particularly as they relate to treatment volume delineation. Articles on safety and quality in radiation therapy. Essays on clinical experience. Articles on practice transformation in radiation oncology, in particular: Aspects of health policy that may impact the future practice of radiation oncology. How information technology, such as data analytics and systems innovations, will change radiation oncology practice. Articles on imaging as they relate to radiation therapy treatment.