乐谱拓扑查询

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data & Knowledge Engineering Pub Date : 2024-06-20 DOI:10.1016/j.datak.2024.102340
Philippe Rigaux, Virginie Thion
{"title":"乐谱拓扑查询","authors":"Philippe Rigaux,&nbsp;Virginie Thion","doi":"10.1016/j.datak.2024.102340","DOIUrl":null,"url":null,"abstract":"<div><p>For centuries, <em>sheet music scores</em> have been the traditional way to preserve and disseminate Western music works. Nowadays, their content can be encoded in digital formats, making possible to store music score data in digital score libraries (DSL). To supply intelligent services (extracting and analysing relevant information from data), the new generation of DSL has to rely on digital representations of the score content as structured objects apt at being manipulated by high-level operators. In the present paper, we propose the <em>Muster</em> model, a graph-based data model for representing the music content of a digital score, and we discuss the querying of such data through graph pattern queries. We then present a proof-of-concept of this approach, which allows storing graph-based representations of music scores in the Neo4j database, and performing musical pattern searches through graph pattern queries with the Cypher query language. A benchmark study, using (real) datasets stemming from the <span>Neuma</span> Digital Score Library, complements this implementation.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"153 ","pages":"Article 102340"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169023X24000648/pdfft?md5=422689552133a28488b6610063f13879&pid=1-s2.0-S0169023X24000648-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Topological querying of music scores\",\"authors\":\"Philippe Rigaux,&nbsp;Virginie Thion\",\"doi\":\"10.1016/j.datak.2024.102340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For centuries, <em>sheet music scores</em> have been the traditional way to preserve and disseminate Western music works. Nowadays, their content can be encoded in digital formats, making possible to store music score data in digital score libraries (DSL). To supply intelligent services (extracting and analysing relevant information from data), the new generation of DSL has to rely on digital representations of the score content as structured objects apt at being manipulated by high-level operators. In the present paper, we propose the <em>Muster</em> model, a graph-based data model for representing the music content of a digital score, and we discuss the querying of such data through graph pattern queries. We then present a proof-of-concept of this approach, which allows storing graph-based representations of music scores in the Neo4j database, and performing musical pattern searches through graph pattern queries with the Cypher query language. A benchmark study, using (real) datasets stemming from the <span>Neuma</span> Digital Score Library, complements this implementation.</p></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"153 \",\"pages\":\"Article 102340\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000648/pdfft?md5=422689552133a28488b6610063f13879&pid=1-s2.0-S0169023X24000648-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000648\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000648","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

几个世纪以来,乐谱一直是保存和传播西方音乐作品的传统方式。如今,乐谱的内容可以用数字格式进行编码,从而可以在数字乐谱图书馆(DSL)中存储乐谱数据。为了提供智能服务(从数据中提取和分析相关信息),新一代数字乐谱图书馆必须依靠乐谱内容的数字表示法,将其作为适合高级操作员操作的结构化对象。在本文中,我们提出了 Muster 模型(一种基于图的数据模型,用于表示数字乐谱的音乐内容),并讨论了如何通过图模式查询此类数据。然后,我们介绍了这种方法的概念验证,它允许在 Neo4j 数据库中存储基于图的乐谱表示,并通过 Cypher 查询语言的图模式查询执行音乐模式搜索。利用 Neuma 数字乐谱库中的(真实)数据集进行的基准研究对该实现方法进行了补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topological querying of music scores

For centuries, sheet music scores have been the traditional way to preserve and disseminate Western music works. Nowadays, their content can be encoded in digital formats, making possible to store music score data in digital score libraries (DSL). To supply intelligent services (extracting and analysing relevant information from data), the new generation of DSL has to rely on digital representations of the score content as structured objects apt at being manipulated by high-level operators. In the present paper, we propose the Muster model, a graph-based data model for representing the music content of a digital score, and we discuss the querying of such data through graph pattern queries. We then present a proof-of-concept of this approach, which allows storing graph-based representations of music scores in the Neo4j database, and performing musical pattern searches through graph pattern queries with the Cypher query language. A benchmark study, using (real) datasets stemming from the Neuma Digital Score Library, complements this implementation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
期刊最新文献
Goal modelling in aeronautics: Practical applications for aircraft and manufacturing designs Ethical reasoning methods for ICT: What they are and when to use them SSQTKG: A Subgraph-based Semantic Query Approach for Temporal Knowledge Graph NoSQL document data migration strategy in the context of schema evolution VarClaMM: A reference meta-model to understand DNA variant classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1