PixelSWAT:一种用户友好型 ArcGIS 工具,用于准备输入,以便在分布式离散化方案中运行 SWAT

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-06-25 DOI:10.1016/j.acags.2024.100175
Nyigam Bole, Arnab Bandyopadhyay, Aditi Bhadra
{"title":"PixelSWAT:一种用户友好型 ArcGIS 工具,用于准备输入,以便在分布式离散化方案中运行 SWAT","authors":"Nyigam Bole,&nbsp;Arnab Bandyopadhyay,&nbsp;Aditi Bhadra","doi":"10.1016/j.acags.2024.100175","DOIUrl":null,"url":null,"abstract":"<div><p>This paper documents the development of PixelSWAT, a Graphical User interface (GUI) python toolbox developed with the motive of creating gridded watershed and stream features to run the Soil and Water Assessment Tool (SWAT) in a distributed discretization scheme thus allowing optimum utilization of gridded weather datasets. Additionally, the tool also aims to automate the preparation of SWAT weather input files from Network Common Data (NetCDF) files for any SWAT user along with the option to interpolate the weather files for each grid. A case study was conducted in the Mago basin of Tawang, Arunachal Pradesh, using gridded weather datasets for hydrological simulation. Three SWAT models were prepared – a conventional SWAT model; a 500 m and a 1000 m gridded watershed PixelSWAT models. Statistical indices Nash Sutcliffe (NSE), Coefficient of Determination (R<sup>2</sup>) and Percent Bias (PBIAS) showed that the PixelSWAT projects performed marginally better than the conventional model and also incorporated the weather data more meaningfully.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"23 ","pages":"Article 100175"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197424000223/pdfft?md5=015d448ba5469b5c76c4bfae001af77e&pid=1-s2.0-S2590197424000223-main.pdf","citationCount":"0","resultStr":"{\"title\":\"PixelSWAT: A user-friendly ArcGIS tool for preparing inputs to run SWAT in a distributed discretization scheme\",\"authors\":\"Nyigam Bole,&nbsp;Arnab Bandyopadhyay,&nbsp;Aditi Bhadra\",\"doi\":\"10.1016/j.acags.2024.100175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper documents the development of PixelSWAT, a Graphical User interface (GUI) python toolbox developed with the motive of creating gridded watershed and stream features to run the Soil and Water Assessment Tool (SWAT) in a distributed discretization scheme thus allowing optimum utilization of gridded weather datasets. Additionally, the tool also aims to automate the preparation of SWAT weather input files from Network Common Data (NetCDF) files for any SWAT user along with the option to interpolate the weather files for each grid. A case study was conducted in the Mago basin of Tawang, Arunachal Pradesh, using gridded weather datasets for hydrological simulation. Three SWAT models were prepared – a conventional SWAT model; a 500 m and a 1000 m gridded watershed PixelSWAT models. Statistical indices Nash Sutcliffe (NSE), Coefficient of Determination (R<sup>2</sup>) and Percent Bias (PBIAS) showed that the PixelSWAT projects performed marginally better than the conventional model and also incorporated the weather data more meaningfully.</p></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"23 \",\"pages\":\"Article 100175\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590197424000223/pdfft?md5=015d448ba5469b5c76c4bfae001af77e&pid=1-s2.0-S2590197424000223-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197424000223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文记录了 PixelSWAT 的开发过程,这是一个图形用户界面(GUI)python 工具箱,其开发目的是创建网格化流域和溪流特征,以便在分布式离散化方案中运行水土评估工具(SWAT),从而优化网格化气象数据集的利用。此外,该工具还旨在为任何 SWAT 用户自动从网络通用数据(NetCDF)文件中准备 SWAT 气象输入文件,并可为每个网格插值气象文件。在阿鲁纳恰尔邦塔旺的马戈盆地进行了一项案例研究,使用网格天气数据集进行水文模拟。研究人员制作了三种 SWAT 模型:传统 SWAT 模型、500 米和 1000 米网格流域 PixelSWAT 模型。统计指数 Nash Sutcliffe (NSE)、判定系数 (R2) 和偏差百分比 (PBIAS) 表明,PixelSWAT 项目的性能略优于传统模型,而且更有意义地纳入了气象数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PixelSWAT: A user-friendly ArcGIS tool for preparing inputs to run SWAT in a distributed discretization scheme

This paper documents the development of PixelSWAT, a Graphical User interface (GUI) python toolbox developed with the motive of creating gridded watershed and stream features to run the Soil and Water Assessment Tool (SWAT) in a distributed discretization scheme thus allowing optimum utilization of gridded weather datasets. Additionally, the tool also aims to automate the preparation of SWAT weather input files from Network Common Data (NetCDF) files for any SWAT user along with the option to interpolate the weather files for each grid. A case study was conducted in the Mago basin of Tawang, Arunachal Pradesh, using gridded weather datasets for hydrological simulation. Three SWAT models were prepared – a conventional SWAT model; a 500 m and a 1000 m gridded watershed PixelSWAT models. Statistical indices Nash Sutcliffe (NSE), Coefficient of Determination (R2) and Percent Bias (PBIAS) showed that the PixelSWAT projects performed marginally better than the conventional model and also incorporated the weather data more meaningfully.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1