{"title":"乔丹-摩尔-吉布森-汤普森方程中的 L∞ 放大","authors":"Vanja Nikolić , Michael Winkler","doi":"10.1016/j.na.2024.113600","DOIUrl":null,"url":null,"abstract":"<div><p>The Jordan–Moore–Gibson–Thompson equation <span><span><span><math><mrow><mi>τ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>α</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>=</mo><mi>β</mi><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>γ</mi><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub></mrow></math></span></span></span>is considered in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≤</mo><mn>3</mn></mrow></math></span>, where <span><math><mrow><mi>τ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>α</mi><mo>∈</mo><mi>R</mi></mrow></math></span>.</p><p>Firstly, it is seen that under the assumption that <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> is such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span>, gradient blow-up phenomena cannot occur in the sense that for any appropriately regular initial data, within a suitable framework of strong solvability, an associated Dirichlet type initial–boundary value problem admits a unique solution <span><math><mi>u</mi></math></span> on a maximal time interval <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow></math></span> which is such that <span><span><span><math><mrow><mtext>if</mtext><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo><</mo><mi>∞</mi><mo>,</mo><mspace></mspace><mtext>then</mtext><mspace></mspace><munder><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi><mo>↗</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></munder><msub><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>=</mo><mi>∞</mi><mo>.</mo><mspace></mspace><mspace></mspace><mrow><mo>(</mo><mo>⋆</mo><mo>)</mo></mrow></mrow></math></span></span></span>This is used to, secondly, make sure that if additionally <span><math><mi>f</mi></math></span> is convex and grows superlinearly in the sense that <span><span><span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>≥</mo><mn>0</mn><mtext>on</mtext><mi>R</mi><mtext>,</mtext><mspace></mspace><mfrac><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow><mrow><mi>ξ</mi></mrow></mfrac><mo>→</mo><mo>+</mo><mi>∞</mi><mspace></mspace><mtext>as</mtext><mi>ξ</mi><mo>→</mo><mo>+</mo><mi>∞</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><msubsup><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mi>∞</mi></mrow></msubsup><mfrac><mrow><mi>d</mi><mi>ξ</mi></mrow><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></mfrac><mo><</mo><mi>∞</mi><mspace></mspace><mtext>for some</mtext><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn><mtext>,</mtext></mrow></math></span></span></span>then for some initial data the above solution must undergo some finite-time <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> blow-up in the style described in (<span><math><mo>⋆</mo></math></span>).</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"247 ","pages":"Article 113600"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001196/pdfft?md5=958a8da5d648564aa56ba997c9422290&pid=1-s2.0-S0362546X24001196-main.pdf","citationCount":"0","resultStr":"{\"title\":\"L∞ blow-up in the Jordan–Moore–Gibson–Thompson equation\",\"authors\":\"Vanja Nikolić , Michael Winkler\",\"doi\":\"10.1016/j.na.2024.113600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Jordan–Moore–Gibson–Thompson equation <span><span><span><math><mrow><mi>τ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>α</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>=</mo><mi>β</mi><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>γ</mi><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub></mrow></math></span></span></span>is considered in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≤</mo><mn>3</mn></mrow></math></span>, where <span><math><mrow><mi>τ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>α</mi><mo>∈</mo><mi>R</mi></mrow></math></span>.</p><p>Firstly, it is seen that under the assumption that <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> is such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span>, gradient blow-up phenomena cannot occur in the sense that for any appropriately regular initial data, within a suitable framework of strong solvability, an associated Dirichlet type initial–boundary value problem admits a unique solution <span><math><mi>u</mi></math></span> on a maximal time interval <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow></math></span> which is such that <span><span><span><math><mrow><mtext>if</mtext><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo><</mo><mi>∞</mi><mo>,</mo><mspace></mspace><mtext>then</mtext><mspace></mspace><munder><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi><mo>↗</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></munder><msub><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>=</mo><mi>∞</mi><mo>.</mo><mspace></mspace><mspace></mspace><mrow><mo>(</mo><mo>⋆</mo><mo>)</mo></mrow></mrow></math></span></span></span>This is used to, secondly, make sure that if additionally <span><math><mi>f</mi></math></span> is convex and grows superlinearly in the sense that <span><span><span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>≥</mo><mn>0</mn><mtext>on</mtext><mi>R</mi><mtext>,</mtext><mspace></mspace><mfrac><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow><mrow><mi>ξ</mi></mrow></mfrac><mo>→</mo><mo>+</mo><mi>∞</mi><mspace></mspace><mtext>as</mtext><mi>ξ</mi><mo>→</mo><mo>+</mo><mi>∞</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><msubsup><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mi>∞</mi></mrow></msubsup><mfrac><mrow><mi>d</mi><mi>ξ</mi></mrow><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></mfrac><mo><</mo><mi>∞</mi><mspace></mspace><mtext>for some</mtext><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn><mtext>,</mtext></mrow></math></span></span></span>then for some initial data the above solution must undergo some finite-time <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> blow-up in the style described in (<span><math><mo>⋆</mo></math></span>).</p></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"247 \",\"pages\":\"Article 113600\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001196/pdfft?md5=958a8da5d648564aa56ba997c9422290&pid=1-s2.0-S0362546X24001196-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001196\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001196","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在n≤3的平滑有界域Ω⊂Rn中考虑Jordan-Moore-Gibson-Thompson方程τuttt+αutt=βΔut+γΔu+(f(u))tt,其中τ>0,β>0,γ>0,α∈R。首先,我们可以看到,在假定 f∈C3(R) 使得 f(0)=0 的条件下,梯度吹大现象不会发生,即对于任何适当规则的初始数据,在一个合适的强可解性框架内,相关的德里赫特型初界值问题在最大时间区间(0,Tmax)上有一个唯一的解 u,该解使得 ifTmax<;∞,则lim suptTmax‖u(⋅,t)‖L∞(Ω)=∞。(⋆)This is used to, secondly, make sure that if additionally f is convex and grows superlinearly in the sense that f′′≥0onR, f(ξ)ξ→+∞asξ→+∞and∫ξ0∞dξf(ξ)<;∞对于某些ξ0>0,则对于某些初始数据,上述解必然会经历如(⋆)所述的有限时间 L∞ 放大。
L∞ blow-up in the Jordan–Moore–Gibson–Thompson equation
The Jordan–Moore–Gibson–Thompson equation is considered in a smoothly bounded domain with , where , and .
Firstly, it is seen that under the assumption that is such that , gradient blow-up phenomena cannot occur in the sense that for any appropriately regular initial data, within a suitable framework of strong solvability, an associated Dirichlet type initial–boundary value problem admits a unique solution on a maximal time interval which is such that This is used to, secondly, make sure that if additionally is convex and grows superlinearly in the sense that then for some initial data the above solution must undergo some finite-time blow-up in the style described in ().
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.