{"title":"乔丹-摩尔-吉布森-汤普森方程中的 L∞ 放大","authors":"Vanja Nikolić , Michael Winkler","doi":"10.1016/j.na.2024.113600","DOIUrl":null,"url":null,"abstract":"<div><p>The Jordan–Moore–Gibson–Thompson equation <span><span><span><math><mrow><mi>τ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>α</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>=</mo><mi>β</mi><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>γ</mi><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub></mrow></math></span></span></span>is considered in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≤</mo><mn>3</mn></mrow></math></span>, where <span><math><mrow><mi>τ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>α</mi><mo>∈</mo><mi>R</mi></mrow></math></span>.</p><p>Firstly, it is seen that under the assumption that <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> is such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span>, gradient blow-up phenomena cannot occur in the sense that for any appropriately regular initial data, within a suitable framework of strong solvability, an associated Dirichlet type initial–boundary value problem admits a unique solution <span><math><mi>u</mi></math></span> on a maximal time interval <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow></math></span> which is such that <span><span><span><math><mrow><mtext>if</mtext><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo><</mo><mi>∞</mi><mo>,</mo><mspace></mspace><mtext>then</mtext><mspace></mspace><munder><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi><mo>↗</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></munder><msub><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>=</mo><mi>∞</mi><mo>.</mo><mspace></mspace><mspace></mspace><mrow><mo>(</mo><mo>⋆</mo><mo>)</mo></mrow></mrow></math></span></span></span>This is used to, secondly, make sure that if additionally <span><math><mi>f</mi></math></span> is convex and grows superlinearly in the sense that <span><span><span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>≥</mo><mn>0</mn><mtext>on</mtext><mi>R</mi><mtext>,</mtext><mspace></mspace><mfrac><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow><mrow><mi>ξ</mi></mrow></mfrac><mo>→</mo><mo>+</mo><mi>∞</mi><mspace></mspace><mtext>as</mtext><mi>ξ</mi><mo>→</mo><mo>+</mo><mi>∞</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><msubsup><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mi>∞</mi></mrow></msubsup><mfrac><mrow><mi>d</mi><mi>ξ</mi></mrow><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></mfrac><mo><</mo><mi>∞</mi><mspace></mspace><mtext>for some</mtext><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn><mtext>,</mtext></mrow></math></span></span></span>then for some initial data the above solution must undergo some finite-time <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> blow-up in the style described in (<span><math><mo>⋆</mo></math></span>).</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001196/pdfft?md5=958a8da5d648564aa56ba997c9422290&pid=1-s2.0-S0362546X24001196-main.pdf","citationCount":"0","resultStr":"{\"title\":\"L∞ blow-up in the Jordan–Moore–Gibson–Thompson equation\",\"authors\":\"Vanja Nikolić , Michael Winkler\",\"doi\":\"10.1016/j.na.2024.113600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Jordan–Moore–Gibson–Thompson equation <span><span><span><math><mrow><mi>τ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi><mi>t</mi></mrow></msub><mo>+</mo><mi>α</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mo>=</mo><mi>β</mi><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>γ</mi><mi>Δ</mi><mi>u</mi><mo>+</mo><msub><mrow><mrow><mo>(</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub></mrow></math></span></span></span>is considered in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≤</mo><mn>3</mn></mrow></math></span>, where <span><math><mrow><mi>τ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>α</mi><mo>∈</mo><mi>R</mi></mrow></math></span>.</p><p>Firstly, it is seen that under the assumption that <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> is such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span>, gradient blow-up phenomena cannot occur in the sense that for any appropriately regular initial data, within a suitable framework of strong solvability, an associated Dirichlet type initial–boundary value problem admits a unique solution <span><math><mi>u</mi></math></span> on a maximal time interval <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow></math></span> which is such that <span><span><span><math><mrow><mtext>if</mtext><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo><</mo><mi>∞</mi><mo>,</mo><mspace></mspace><mtext>then</mtext><mspace></mspace><munder><mrow><mo>lim sup</mo></mrow><mrow><mi>t</mi><mo>↗</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></munder><msub><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mo>=</mo><mi>∞</mi><mo>.</mo><mspace></mspace><mspace></mspace><mrow><mo>(</mo><mo>⋆</mo><mo>)</mo></mrow></mrow></math></span></span></span>This is used to, secondly, make sure that if additionally <span><math><mi>f</mi></math></span> is convex and grows superlinearly in the sense that <span><span><span><math><mrow><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>≥</mo><mn>0</mn><mtext>on</mtext><mi>R</mi><mtext>,</mtext><mspace></mspace><mfrac><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow><mrow><mi>ξ</mi></mrow></mfrac><mo>→</mo><mo>+</mo><mi>∞</mi><mspace></mspace><mtext>as</mtext><mi>ξ</mi><mo>→</mo><mo>+</mo><mi>∞</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><msubsup><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mi>∞</mi></mrow></msubsup><mfrac><mrow><mi>d</mi><mi>ξ</mi></mrow><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></mfrac><mo><</mo><mi>∞</mi><mspace></mspace><mtext>for some</mtext><msub><mrow><mi>ξ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn><mtext>,</mtext></mrow></math></span></span></span>then for some initial data the above solution must undergo some finite-time <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> blow-up in the style described in (<span><math><mo>⋆</mo></math></span>).</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001196/pdfft?md5=958a8da5d648564aa56ba997c9422290&pid=1-s2.0-S0362546X24001196-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001196\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001196","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在n≤3的平滑有界域Ω⊂Rn中考虑Jordan-Moore-Gibson-Thompson方程τuttt+αutt=βΔut+γΔu+(f(u))tt,其中τ>0,β>0,γ>0,α∈R。首先,我们可以看到,在假定 f∈C3(R) 使得 f(0)=0 的条件下,梯度吹大现象不会发生,即对于任何适当规则的初始数据,在一个合适的强可解性框架内,相关的德里赫特型初界值问题在最大时间区间(0,Tmax)上有一个唯一的解 u,该解使得 ifTmax<;∞,则lim suptTmax‖u(⋅,t)‖L∞(Ω)=∞。(⋆)This is used to, secondly, make sure that if additionally f is convex and grows superlinearly in the sense that f′′≥0onR, f(ξ)ξ→+∞asξ→+∞and∫ξ0∞dξf(ξ)<;∞对于某些ξ0>0,则对于某些初始数据,上述解必然会经历如(⋆)所述的有限时间 L∞ 放大。
L∞ blow-up in the Jordan–Moore–Gibson–Thompson equation
The Jordan–Moore–Gibson–Thompson equation is considered in a smoothly bounded domain with , where , and .
Firstly, it is seen that under the assumption that is such that , gradient blow-up phenomena cannot occur in the sense that for any appropriately regular initial data, within a suitable framework of strong solvability, an associated Dirichlet type initial–boundary value problem admits a unique solution on a maximal time interval which is such that This is used to, secondly, make sure that if additionally is convex and grows superlinearly in the sense that then for some initial data the above solution must undergo some finite-time blow-up in the style described in ().
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.