用于下一个篮子推荐的分层表示学习

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS Array Pub Date : 2024-06-17 DOI:10.1016/j.array.2024.100354
Wenhua Zeng , Junjie Liu , Bo Zhang
{"title":"用于下一个篮子推荐的分层表示学习","authors":"Wenhua Zeng ,&nbsp;Junjie Liu ,&nbsp;Bo Zhang","doi":"10.1016/j.array.2024.100354","DOIUrl":null,"url":null,"abstract":"<div><p>The task of next basket recommendation is pivotal for recommender systems. It involves predicting user actions, such as the next product purchase or movie selection, by exploring sequential purchase behavior and integrating users’ general preferences. These elements may converge and influence users’ subsequent choices. The challenge intensifies with the presence of varied user purchase sequences in the training set, as indiscriminate incorporation of these sequences can introduce superfluous noise. In response to these challenges, we propose an innovative approach: the Selective Hierarchical Representation Model (SHRM). This model effectively integrates transactional data and user profiles to discern both sequential purchase transactions and general user preferences. The SHRM’s adaptability, particularly in employing nonlinear aggregation operations on user representations, enables it to model complex interactions among various influencing factors. Notably, the SHRM employs a Recurrent Neural Network (RNN) to capture extended dependencies in recent purchasing activities. Moreover, it incorporates an innovative sequence similarity task, grounded in a k-plet sampling strategy. This strategy clusters similar sequences, significantly mitigating the learning process’s noise impact. Through empirical validation on three diverse real-world datasets, we demonstrate that our model consistently surpasses leading benchmarks across various evaluation metrics, establishing a new standard in next-basket recommendation.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"23 ","pages":"Article 100354"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590005624000201/pdfft?md5=78ee4b9a97b496d96fbd334c5bf79bfb&pid=1-s2.0-S2590005624000201-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hierarchical representation learning for next basket recommendation\",\"authors\":\"Wenhua Zeng ,&nbsp;Junjie Liu ,&nbsp;Bo Zhang\",\"doi\":\"10.1016/j.array.2024.100354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The task of next basket recommendation is pivotal for recommender systems. It involves predicting user actions, such as the next product purchase or movie selection, by exploring sequential purchase behavior and integrating users’ general preferences. These elements may converge and influence users’ subsequent choices. The challenge intensifies with the presence of varied user purchase sequences in the training set, as indiscriminate incorporation of these sequences can introduce superfluous noise. In response to these challenges, we propose an innovative approach: the Selective Hierarchical Representation Model (SHRM). This model effectively integrates transactional data and user profiles to discern both sequential purchase transactions and general user preferences. The SHRM’s adaptability, particularly in employing nonlinear aggregation operations on user representations, enables it to model complex interactions among various influencing factors. Notably, the SHRM employs a Recurrent Neural Network (RNN) to capture extended dependencies in recent purchasing activities. Moreover, it incorporates an innovative sequence similarity task, grounded in a k-plet sampling strategy. This strategy clusters similar sequences, significantly mitigating the learning process’s noise impact. Through empirical validation on three diverse real-world datasets, we demonstrate that our model consistently surpasses leading benchmarks across various evaluation metrics, establishing a new standard in next-basket recommendation.</p></div>\",\"PeriodicalId\":8417,\"journal\":{\"name\":\"Array\",\"volume\":\"23 \",\"pages\":\"Article 100354\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590005624000201/pdfft?md5=78ee4b9a97b496d96fbd334c5bf79bfb&pid=1-s2.0-S2590005624000201-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Array\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590005624000201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005624000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

下一篮子推荐任务对推荐系统至关重要。它涉及通过探索用户的连续购买行为并综合用户的一般偏好来预测用户的行为,如下一次购买产品或选择电影。这些因素可能会交汇在一起,影响用户的后续选择。如果训练集中存在不同的用户购买序列,挑战就会加剧,因为不加区分地纳入这些序列可能会带来多余的噪音。为了应对这些挑战,我们提出了一种创新方法:选择性分层表示模型(SHRM)。该模型有效地整合了交易数据和用户特征,既能辨别连续的购买交易,也能辨别一般的用户偏好。SHRM 具有很强的适应性,尤其是在用户表征上采用非线性聚合操作,使其能够模拟各种影响因素之间复杂的相互作用。值得注意的是,SHRM 采用了循环神经网络(RNN)来捕捉近期采购活动中的扩展依赖关系。此外,它还采用了创新性的序列相似性任务,以 k 小段抽样策略为基础。该策略对相似序列进行聚类,大大减轻了学习过程中的噪声影响。通过在三个不同的真实数据集上进行经验验证,我们证明了我们的模型在各种评估指标上始终超越领先基准,为下一篮子推荐建立了新的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical representation learning for next basket recommendation

The task of next basket recommendation is pivotal for recommender systems. It involves predicting user actions, such as the next product purchase or movie selection, by exploring sequential purchase behavior and integrating users’ general preferences. These elements may converge and influence users’ subsequent choices. The challenge intensifies with the presence of varied user purchase sequences in the training set, as indiscriminate incorporation of these sequences can introduce superfluous noise. In response to these challenges, we propose an innovative approach: the Selective Hierarchical Representation Model (SHRM). This model effectively integrates transactional data and user profiles to discern both sequential purchase transactions and general user preferences. The SHRM’s adaptability, particularly in employing nonlinear aggregation operations on user representations, enables it to model complex interactions among various influencing factors. Notably, the SHRM employs a Recurrent Neural Network (RNN) to capture extended dependencies in recent purchasing activities. Moreover, it incorporates an innovative sequence similarity task, grounded in a k-plet sampling strategy. This strategy clusters similar sequences, significantly mitigating the learning process’s noise impact. Through empirical validation on three diverse real-world datasets, we demonstrate that our model consistently surpasses leading benchmarks across various evaluation metrics, establishing a new standard in next-basket recommendation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
期刊最新文献
Combining computational linguistics with sentence embedding to create a zero-shot NLIDB Development of automatic CNC machine with versatile applications in art, design, and engineering Dual-model approach for one-shot lithium-ion battery state of health sequence prediction Maximizing influence via link prediction in evolving networks Assessing generalizability of Deep Reinforcement Learning algorithms for Automated Vulnerability Assessment and Penetration Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1