{"title":"使用水杨酸、过氧化氢和热水处理法减少受感染茎插条上的木薯花叶病毒","authors":"Mercy W. Kung'u, Evans N. Nyaboga, Chrissie Rey","doi":"10.1111/jph.13347","DOIUrl":null,"url":null,"abstract":"<p>Cassava mosaic disease (CMD) causes significant losses in cassava production in Africa. The disease is caused by several cassava mosaic geminiviruses (CMGs) and spread through the use of infected plant materials. The infected plants remain infected throughout their vegetative lifecycle as the disease cannot be controlled by standard plant protection measures. Therefore, it is important to develop inexpensive field-based methods that can be easily adopted by small-scale farmers to sanitize geminiviruses-infected stem cuttings used as planting material. This study aimed at eliminating CMGs from infected cassava stem cuttings by use of salicylic acid (SA), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and hot water (HW) treatments. Eight varieties of CMD-infected stem cuttings were pretreated with SA (1.25, 2.5 and 5 mM), H<sub>2</sub>O<sub>2</sub> (0.5%, 1.0% and 1.5%) or hot water (50 and 55°C) at different exposure times before establishment in the glasshouse for evaluation of subsequent plant growth and geminivirus detection. Based on the cassava varieties used for the different treatments, treatment with hot water at 50°C for 5 min and 1.0% H<sub>2</sub>O<sub>2</sub> for 12 h were the most effective in eliminating CMGs with an efficiency of 81.7% and 77.8%, respectively. Salicylic acid at a concentration of 5 mM for 6 h eliminated the viruses in 65.1% of the cuttings. The methods tested herein have the potential for producing planting materials with significantly reduced CMD risk for smallholder farmers and the cassava industry to meet their increasing demand. It could also contribute to the global exchange of germplasm for conservation and breeding programs.</p>","PeriodicalId":16843,"journal":{"name":"Journal of Phytopathology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jph.13347","citationCount":"0","resultStr":"{\"title\":\"Reduction of cassava mosaic geminiviruses from infected stem cuttings using salicylic acid, hydrogen peroxide and hot water treatment\",\"authors\":\"Mercy W. Kung'u, Evans N. Nyaboga, Chrissie Rey\",\"doi\":\"10.1111/jph.13347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cassava mosaic disease (CMD) causes significant losses in cassava production in Africa. The disease is caused by several cassava mosaic geminiviruses (CMGs) and spread through the use of infected plant materials. The infected plants remain infected throughout their vegetative lifecycle as the disease cannot be controlled by standard plant protection measures. Therefore, it is important to develop inexpensive field-based methods that can be easily adopted by small-scale farmers to sanitize geminiviruses-infected stem cuttings used as planting material. This study aimed at eliminating CMGs from infected cassava stem cuttings by use of salicylic acid (SA), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and hot water (HW) treatments. Eight varieties of CMD-infected stem cuttings were pretreated with SA (1.25, 2.5 and 5 mM), H<sub>2</sub>O<sub>2</sub> (0.5%, 1.0% and 1.5%) or hot water (50 and 55°C) at different exposure times before establishment in the glasshouse for evaluation of subsequent plant growth and geminivirus detection. Based on the cassava varieties used for the different treatments, treatment with hot water at 50°C for 5 min and 1.0% H<sub>2</sub>O<sub>2</sub> for 12 h were the most effective in eliminating CMGs with an efficiency of 81.7% and 77.8%, respectively. Salicylic acid at a concentration of 5 mM for 6 h eliminated the viruses in 65.1% of the cuttings. The methods tested herein have the potential for producing planting materials with significantly reduced CMD risk for smallholder farmers and the cassava industry to meet their increasing demand. It could also contribute to the global exchange of germplasm for conservation and breeding programs.</p>\",\"PeriodicalId\":16843,\"journal\":{\"name\":\"Journal of Phytopathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jph.13347\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jph.13347\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jph.13347","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Reduction of cassava mosaic geminiviruses from infected stem cuttings using salicylic acid, hydrogen peroxide and hot water treatment
Cassava mosaic disease (CMD) causes significant losses in cassava production in Africa. The disease is caused by several cassava mosaic geminiviruses (CMGs) and spread through the use of infected plant materials. The infected plants remain infected throughout their vegetative lifecycle as the disease cannot be controlled by standard plant protection measures. Therefore, it is important to develop inexpensive field-based methods that can be easily adopted by small-scale farmers to sanitize geminiviruses-infected stem cuttings used as planting material. This study aimed at eliminating CMGs from infected cassava stem cuttings by use of salicylic acid (SA), hydrogen peroxide (H2O2) and hot water (HW) treatments. Eight varieties of CMD-infected stem cuttings were pretreated with SA (1.25, 2.5 and 5 mM), H2O2 (0.5%, 1.0% and 1.5%) or hot water (50 and 55°C) at different exposure times before establishment in the glasshouse for evaluation of subsequent plant growth and geminivirus detection. Based on the cassava varieties used for the different treatments, treatment with hot water at 50°C for 5 min and 1.0% H2O2 for 12 h were the most effective in eliminating CMGs with an efficiency of 81.7% and 77.8%, respectively. Salicylic acid at a concentration of 5 mM for 6 h eliminated the viruses in 65.1% of the cuttings. The methods tested herein have the potential for producing planting materials with significantly reduced CMD risk for smallholder farmers and the cassava industry to meet their increasing demand. It could also contribute to the global exchange of germplasm for conservation and breeding programs.
期刊介绍:
Journal of Phytopathology publishes original and review articles on all scientific aspects of applied phytopathology in agricultural and horticultural crops. Preference is given to contributions improving our understanding of the biotic and abiotic determinants of plant diseases, including epidemics and damage potential, as a basis for innovative disease management, modelling and forecasting. This includes practical aspects and the development of methods for disease diagnosis as well as infection bioassays.
Studies at the population, organism, physiological, biochemical and molecular genetic level are welcome. The journal scope comprises the pathology and epidemiology of plant diseases caused by microbial pathogens, viruses and nematodes.
Accepted papers should advance our conceptual knowledge of plant diseases, rather than presenting descriptive or screening data unrelated to phytopathological mechanisms or functions. Results from unrepeated experimental conditions or data with no or inappropriate statistical processing will not be considered. Authors are encouraged to look at past issues to ensure adherence to the standards of the journal.