Riddhi Dave, Fiona Darbyshire, Juan Carlos Afonso, I. Fomin
{"title":"上克拉通及其周边地区的热化学结构:板块岩石圈的演化和保存的意义","authors":"Riddhi Dave, Fiona Darbyshire, Juan Carlos Afonso, I. Fomin","doi":"10.1029/2024GC011454","DOIUrl":null,"url":null,"abstract":"<p>The Archean Superior craton was formed by the assemblage of continental and oceanic terranes at ∼2.6 Ga. The craton is surrounded by multiple Proterozoic mobile belts, including the Paleoproterozoic Trans-Hudson Orogen which brought together the Superior and Rae/Hearne cratons at ∼1.9–1.8 Ga. Despite numerous studies on Precambrian lithospheric formation and evolution, the deep thermochemical structure of the Superior craton and its surroundings remains poorly understood. Here we investigate the upper mantle beneath the region from the surface to 400 km depth by jointly inverting Rayleigh wave phase velocity dispersion data, elevation, geoid height and surface heat flow, using a probabilistic inversion to obtain a (pseudo-)3D model of composition, density and temperature. The lithospheric structure is dominated by thick cratonic roots (>300 km) beneath the eastern and western arms of the Superior craton, with a chemically depleted signature (Mg# > 92.5), consistent with independent results from mantle xenoliths. Beneath the surrounding Proterozoic and Phanerozoic orogens, the Mid-continent Rift and Hudson Strait, we observe a relatively thinner lithosphere and more fertile composition, indicating that these regions have undergone lithospheric modification and erosion. Our model supports the hypothesis that the core of the Superior craton is well-preserved and has evaded lithospheric destruction and refertilization. We propose three factors playing a critical role in the craton's stability: (a) the presence of a mid-lithospheric discontinuity, (b) the correct isopycnic conditions to sustain a strength contrast between the craton and the surrounding mantle, and (c) the presence of weaker mobile belts around the craton.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011454","citationCount":"0","resultStr":"{\"title\":\"Thermochemical Structure of the Superior Craton and Environs: Implications for the Evolution and Preservation of Cratonic Lithosphere\",\"authors\":\"Riddhi Dave, Fiona Darbyshire, Juan Carlos Afonso, I. Fomin\",\"doi\":\"10.1029/2024GC011454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Archean Superior craton was formed by the assemblage of continental and oceanic terranes at ∼2.6 Ga. The craton is surrounded by multiple Proterozoic mobile belts, including the Paleoproterozoic Trans-Hudson Orogen which brought together the Superior and Rae/Hearne cratons at ∼1.9–1.8 Ga. Despite numerous studies on Precambrian lithospheric formation and evolution, the deep thermochemical structure of the Superior craton and its surroundings remains poorly understood. Here we investigate the upper mantle beneath the region from the surface to 400 km depth by jointly inverting Rayleigh wave phase velocity dispersion data, elevation, geoid height and surface heat flow, using a probabilistic inversion to obtain a (pseudo-)3D model of composition, density and temperature. The lithospheric structure is dominated by thick cratonic roots (>300 km) beneath the eastern and western arms of the Superior craton, with a chemically depleted signature (Mg# > 92.5), consistent with independent results from mantle xenoliths. Beneath the surrounding Proterozoic and Phanerozoic orogens, the Mid-continent Rift and Hudson Strait, we observe a relatively thinner lithosphere and more fertile composition, indicating that these regions have undergone lithospheric modification and erosion. Our model supports the hypothesis that the core of the Superior craton is well-preserved and has evaded lithospheric destruction and refertilization. We propose three factors playing a critical role in the craton's stability: (a) the presence of a mid-lithospheric discontinuity, (b) the correct isopycnic conditions to sustain a strength contrast between the craton and the surrounding mantle, and (c) the presence of weaker mobile belts around the craton.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011454\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011454\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011454","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Thermochemical Structure of the Superior Craton and Environs: Implications for the Evolution and Preservation of Cratonic Lithosphere
The Archean Superior craton was formed by the assemblage of continental and oceanic terranes at ∼2.6 Ga. The craton is surrounded by multiple Proterozoic mobile belts, including the Paleoproterozoic Trans-Hudson Orogen which brought together the Superior and Rae/Hearne cratons at ∼1.9–1.8 Ga. Despite numerous studies on Precambrian lithospheric formation and evolution, the deep thermochemical structure of the Superior craton and its surroundings remains poorly understood. Here we investigate the upper mantle beneath the region from the surface to 400 km depth by jointly inverting Rayleigh wave phase velocity dispersion data, elevation, geoid height and surface heat flow, using a probabilistic inversion to obtain a (pseudo-)3D model of composition, density and temperature. The lithospheric structure is dominated by thick cratonic roots (>300 km) beneath the eastern and western arms of the Superior craton, with a chemically depleted signature (Mg# > 92.5), consistent with independent results from mantle xenoliths. Beneath the surrounding Proterozoic and Phanerozoic orogens, the Mid-continent Rift and Hudson Strait, we observe a relatively thinner lithosphere and more fertile composition, indicating that these regions have undergone lithospheric modification and erosion. Our model supports the hypothesis that the core of the Superior craton is well-preserved and has evaded lithospheric destruction and refertilization. We propose three factors playing a critical role in the craton's stability: (a) the presence of a mid-lithospheric discontinuity, (b) the correct isopycnic conditions to sustain a strength contrast between the craton and the surrounding mantle, and (c) the presence of weaker mobile belts around the craton.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.