Fengying Ma, Zhi Wang, Peng Ji, Chengcai Fu, Feng Wang
{"title":"ResTrans-Unet:基于残差感知变换器的医学图像分割方法","authors":"Fengying Ma, Zhi Wang, Peng Ji, Chengcai Fu, Feng Wang","doi":"10.1002/ima.23122","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The convolutional neural network has significantly enhanced the efficacy of medical image segmentation. However, challenges persist in the deep learning-based method for medical image segmentation, necessitating the resolution of the following issues: (1) Medical images, characterized by a vast spatial scale and complex structure, pose difficulties in accurate edge information extraction; (2) In the decoding process, the assumption of equal importance among different channels contradicts the reality of their varying significance. This study addresses challenges observed in earlier medical image segmentation networks, particularly focusing on the precise extraction of edge information and the inadequate consideration of inter-channel importance during decoding. To address these challenges, we introduce ResTrans-Unet (residual transformer medical image segmentation network), an automatic segmentation model based on Residual-aware transformer. The Transformer is enhanced through the incorporation of ResMLP, resulting in enhanced edge information capture in images and improved network convergence speed. Additionally, Squeeze-and-Excitation Networks, which emphasize channel relationships, are integrated into the decoder to precisely highlight important features and suppress irrelevant ones. Experimental validations on two public datasets were carried out to assess the proposed model, comparing its performance with that of advanced models. The experimental results unequivocally demonstrate the superior performance of ResTrans-Unet in medical image segmentation tasks.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ResTrans-Unet: A Residual-Aware Transformer-Based Approach to Medical Image Segmentation\",\"authors\":\"Fengying Ma, Zhi Wang, Peng Ji, Chengcai Fu, Feng Wang\",\"doi\":\"10.1002/ima.23122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The convolutional neural network has significantly enhanced the efficacy of medical image segmentation. However, challenges persist in the deep learning-based method for medical image segmentation, necessitating the resolution of the following issues: (1) Medical images, characterized by a vast spatial scale and complex structure, pose difficulties in accurate edge information extraction; (2) In the decoding process, the assumption of equal importance among different channels contradicts the reality of their varying significance. This study addresses challenges observed in earlier medical image segmentation networks, particularly focusing on the precise extraction of edge information and the inadequate consideration of inter-channel importance during decoding. To address these challenges, we introduce ResTrans-Unet (residual transformer medical image segmentation network), an automatic segmentation model based on Residual-aware transformer. The Transformer is enhanced through the incorporation of ResMLP, resulting in enhanced edge information capture in images and improved network convergence speed. Additionally, Squeeze-and-Excitation Networks, which emphasize channel relationships, are integrated into the decoder to precisely highlight important features and suppress irrelevant ones. Experimental validations on two public datasets were carried out to assess the proposed model, comparing its performance with that of advanced models. The experimental results unequivocally demonstrate the superior performance of ResTrans-Unet in medical image segmentation tasks.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23122\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23122","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
ResTrans-Unet: A Residual-Aware Transformer-Based Approach to Medical Image Segmentation
The convolutional neural network has significantly enhanced the efficacy of medical image segmentation. However, challenges persist in the deep learning-based method for medical image segmentation, necessitating the resolution of the following issues: (1) Medical images, characterized by a vast spatial scale and complex structure, pose difficulties in accurate edge information extraction; (2) In the decoding process, the assumption of equal importance among different channels contradicts the reality of their varying significance. This study addresses challenges observed in earlier medical image segmentation networks, particularly focusing on the precise extraction of edge information and the inadequate consideration of inter-channel importance during decoding. To address these challenges, we introduce ResTrans-Unet (residual transformer medical image segmentation network), an automatic segmentation model based on Residual-aware transformer. The Transformer is enhanced through the incorporation of ResMLP, resulting in enhanced edge information capture in images and improved network convergence speed. Additionally, Squeeze-and-Excitation Networks, which emphasize channel relationships, are integrated into the decoder to precisely highlight important features and suppress irrelevant ones. Experimental validations on two public datasets were carried out to assess the proposed model, comparing its performance with that of advanced models. The experimental results unequivocally demonstrate the superior performance of ResTrans-Unet in medical image segmentation tasks.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.