PowerAI-Diabetes:回顾血糖和血脂变异性以预测中国糖尿病人群的心血管事件

Sharen Lee, Tong Liu, Cheuk To Chung, Johannes Reinhold, Vassilios S. Vassiliou, Gary Tse
{"title":"PowerAI-Diabetes:回顾血糖和血脂变异性以预测中国糖尿病人群的心血管事件","authors":"Sharen Lee, Tong Liu, Cheuk To Chung, Johannes Reinhold, Vassilios S. Vassiliou, Gary Tse","doi":"10.1038/s44324-024-00012-7","DOIUrl":null,"url":null,"abstract":"The aim of this study is to review the predictive value of visit-to-visit variability in glycaemic or lipid tests for forecasting major adverse cardiovascular events (MACE) in diabetes mellitus. Data from existing studies suggests that such variability is an independent predictor of adverse outcomes in this patient cohort. This understanding is then applied to the development of PowerAI-Diabetes, a Chinese-specific artificial intelligence-enhanced predictive model for predicting the risks of major adverse cardiovascular events and diabetic complications. The model integrates an amalgam of variables including demographics, laboratory and medication information to assess the risk of MACE. Future efforts should focus on the incorporation of treatment effects and non-traditional cardiovascular risk factors, such as social determinants of health variables, to improve the performance of predictive models.","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44324-024-00012-7.pdf","citationCount":"0","resultStr":"{\"title\":\"PowerAI-Diabetes: Review of glycemic and lipid variability to predict cardiovascular events in Chinese diabetic population\",\"authors\":\"Sharen Lee, Tong Liu, Cheuk To Chung, Johannes Reinhold, Vassilios S. Vassiliou, Gary Tse\",\"doi\":\"10.1038/s44324-024-00012-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to review the predictive value of visit-to-visit variability in glycaemic or lipid tests for forecasting major adverse cardiovascular events (MACE) in diabetes mellitus. Data from existing studies suggests that such variability is an independent predictor of adverse outcomes in this patient cohort. This understanding is then applied to the development of PowerAI-Diabetes, a Chinese-specific artificial intelligence-enhanced predictive model for predicting the risks of major adverse cardiovascular events and diabetic complications. The model integrates an amalgam of variables including demographics, laboratory and medication information to assess the risk of MACE. Future efforts should focus on the incorporation of treatment effects and non-traditional cardiovascular risk factors, such as social determinants of health variables, to improve the performance of predictive models.\",\"PeriodicalId\":501710,\"journal\":{\"name\":\"npj Metabolic Health and Disease\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44324-024-00012-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Metabolic Health and Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44324-024-00012-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Metabolic Health and Disease","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44324-024-00012-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是回顾血糖或血脂检测的逐次变异性对预测糖尿病患者主要不良心血管事件(MACE)的预测价值。现有研究数据表明,这种变异性是该患者群不良结局的独立预测因素。我们将这一认识应用于 PowerAI-Diabetes 的开发,这是一个中国特有的人工智能增强型预测模型,用于预测主要不良心血管事件和糖尿病并发症的风险。该模型整合了包括人口统计学、实验室和药物信息在内的各种变量,以评估重大不良心血管事件的风险。未来的工作重点应是纳入治疗效果和非传统心血管风险因素,如健康的社会决定因素变量,以提高预测模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PowerAI-Diabetes: Review of glycemic and lipid variability to predict cardiovascular events in Chinese diabetic population
The aim of this study is to review the predictive value of visit-to-visit variability in glycaemic or lipid tests for forecasting major adverse cardiovascular events (MACE) in diabetes mellitus. Data from existing studies suggests that such variability is an independent predictor of adverse outcomes in this patient cohort. This understanding is then applied to the development of PowerAI-Diabetes, a Chinese-specific artificial intelligence-enhanced predictive model for predicting the risks of major adverse cardiovascular events and diabetic complications. The model integrates an amalgam of variables including demographics, laboratory and medication information to assess the risk of MACE. Future efforts should focus on the incorporation of treatment effects and non-traditional cardiovascular risk factors, such as social determinants of health variables, to improve the performance of predictive models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Calcium-mediated regulation of mitophagy: implications in neurodegenerative diseases. Reshaping lipid metabolism with long-term alternate day feeding in type 2 diabetes mice. Intermittent fasting as a treatment for obesity in young people: a scoping review The effect of high-sugar feeding on rodent metabolic phenotype: a systematic review and meta-analysis Chain splitting of insulin: an underlying mechanism of insulin resistance?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1