P450 TleB 选择性 C-S 键形成的机理启示

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-07-01 DOI:10.1021/acscatal.4c03328
Hongxun Gao, Yakun Fan, Xuwei He, Xiaogang Peng, Zhen Li, Yanxin Zheng, Shengbiao Ji, Longwu Ye, Aitao Li, Binju Wang, Jing Zhao
{"title":"P450 TleB 选择性 C-S 键形成的机理启示","authors":"Hongxun Gao, Yakun Fan, Xuwei He, Xiaogang Peng, Zhen Li, Yanxin Zheng, Shengbiao Ji, Longwu Ye, Aitao Li, Binju Wang, Jing Zhao","doi":"10.1021/acscatal.4c03328","DOIUrl":null,"url":null,"abstract":"The P450 monooxygenase TleB (CYP107E48) catalyzes intramolecular C–S bond formation in a thiol-containing substrate, yielding two sulfur-containing indolactam derivatives (P1 and P2). However, the key sites influencing TleB’s product selectivity and the molecular mechanisms underlying the selective C–S bond formation are not fully understood. To address this, we created an artificial self-sufficient P450, TleB-CYP116B46, by fusing TleB with the reductase domain of CYP116B46. Structure-guided engineering of TleB-CYP116B46 generates variant L85G with 99% selectivity for P1 and variant I282L/Q387L/I234F with 95% selectivity for P2. Exploring TleB homologues and generating corresponding mutants elucidate the identified sites’ crucial role in product selectivity. Computational studies suggest a diradical mechanism for C–S bond formation for both P1 and P2 products. Intriguingly, we found that the substrate radical could undergo conformational changes in both the S–H and indole groups. The L85G variant facilitates the conformational switch of the indole radical group, thereby leading to the selective C–S bond formation for the P1 product. By contrast, the I282L/Q387L/I234F variant barricades the conformational switch of the indole radical group, affording the P2 product. Our simulations highlight that the protein environment can dictate the dynamics and positioning of the substrate radical, thereby leading to the selective C–S bond formation in P450s.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Insights into the Selective C–S Bond Formation by P450 TleB\",\"authors\":\"Hongxun Gao, Yakun Fan, Xuwei He, Xiaogang Peng, Zhen Li, Yanxin Zheng, Shengbiao Ji, Longwu Ye, Aitao Li, Binju Wang, Jing Zhao\",\"doi\":\"10.1021/acscatal.4c03328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The P450 monooxygenase TleB (CYP107E48) catalyzes intramolecular C–S bond formation in a thiol-containing substrate, yielding two sulfur-containing indolactam derivatives (P1 and P2). However, the key sites influencing TleB’s product selectivity and the molecular mechanisms underlying the selective C–S bond formation are not fully understood. To address this, we created an artificial self-sufficient P450, TleB-CYP116B46, by fusing TleB with the reductase domain of CYP116B46. Structure-guided engineering of TleB-CYP116B46 generates variant L85G with 99% selectivity for P1 and variant I282L/Q387L/I234F with 95% selectivity for P2. Exploring TleB homologues and generating corresponding mutants elucidate the identified sites’ crucial role in product selectivity. Computational studies suggest a diradical mechanism for C–S bond formation for both P1 and P2 products. Intriguingly, we found that the substrate radical could undergo conformational changes in both the S–H and indole groups. The L85G variant facilitates the conformational switch of the indole radical group, thereby leading to the selective C–S bond formation for the P1 product. By contrast, the I282L/Q387L/I234F variant barricades the conformational switch of the indole radical group, affording the P2 product. Our simulations highlight that the protein environment can dictate the dynamics and positioning of the substrate radical, thereby leading to the selective C–S bond formation in P450s.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscatal.4c03328\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c03328","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

P450 单加氧酶 TleB(CYP107E48)催化含硫底物中分子内 C-S 键的形成,产生两种含硫吲哚内酰胺衍生物(P1 和 P2)。然而,影响 TleB 产物选择性的关键位点以及选择性 C-S 键形成的分子机制尚未完全清楚。为了解决这个问题,我们通过将 TleB 与 CYP116B46 的还原酶结构域融合,创建了一种人工自给自足 P450,即 TleB-CYP116B46。TleB-CYP116B46 的结构指导工程产生了变体 L85G 和变体 I282L/Q387L/I234F,前者对 P1 的选择性为 99%,后者对 P2 的选择性为 95%。对 TleB 同源物的探索和相应突变体的生成,阐明了已确定位点在产品选择性中的关键作用。计算研究表明,P1 和 P2 产物的 C-S 键形成都有一个二叉机制。有趣的是,我们发现底物基团的 S-H 和吲哚基团都会发生构象变化。L85G 变体有利于吲哚基团的构象变化,从而导致 P1 产物选择性地形成 C-S 键。相比之下,I282L/Q387L/I234F 变体阻碍了吲哚基团的构象转换,从而产生了 P2 产物。我们的模拟突出表明,蛋白质环境可以决定底物自由基的动力学和定位,从而导致 P450s 中 C-S 键的选择性形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanistic Insights into the Selective C–S Bond Formation by P450 TleB
The P450 monooxygenase TleB (CYP107E48) catalyzes intramolecular C–S bond formation in a thiol-containing substrate, yielding two sulfur-containing indolactam derivatives (P1 and P2). However, the key sites influencing TleB’s product selectivity and the molecular mechanisms underlying the selective C–S bond formation are not fully understood. To address this, we created an artificial self-sufficient P450, TleB-CYP116B46, by fusing TleB with the reductase domain of CYP116B46. Structure-guided engineering of TleB-CYP116B46 generates variant L85G with 99% selectivity for P1 and variant I282L/Q387L/I234F with 95% selectivity for P2. Exploring TleB homologues and generating corresponding mutants elucidate the identified sites’ crucial role in product selectivity. Computational studies suggest a diradical mechanism for C–S bond formation for both P1 and P2 products. Intriguingly, we found that the substrate radical could undergo conformational changes in both the S–H and indole groups. The L85G variant facilitates the conformational switch of the indole radical group, thereby leading to the selective C–S bond formation for the P1 product. By contrast, the I282L/Q387L/I234F variant barricades the conformational switch of the indole radical group, affording the P2 product. Our simulations highlight that the protein environment can dictate the dynamics and positioning of the substrate radical, thereby leading to the selective C–S bond formation in P450s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Understanding the Effects of Anode Catalyst Conductivity and Loading on Catalyst Layer Utilization and Performance for Anion Exchange Membrane Water Electrolysis Activity and Stability of ZnFe2O4 Photoanodes under Photoelectrochemical Conditions Dynamic Ionization Equilibrium-Induced “Oxygen Exchange” in CO Electroreduction Insight into the Selectivity-Determining Step of Various Photocatalytic CO2 Reduction Products by Inorganic Semiconductors Structural and Computational Insights into the Noncanonical Aromatization in Fungal Polyketide Biosynthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1